1,511 research outputs found

    Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex

    Get PDF
    In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163]

    Approximating gradients with continuous piecewise polynomial functions

    Get PDF
    Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximations errors on elements. Thus, requiring continuity does not downgrade local approximability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.Comment: 21 pages, 1 figur

    Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM

    Full text link
    We prove inverse-type estimates for the four classical boundary integral operators associated with the Laplace operator. These estimates are used to show convergence of an h-adaptive algorithm for the coupling of a finite element method with a boundary element method which is driven by a weighted residual error estimator
    • …
    corecore