190 research outputs found

    Time-Optimal Control Studies for Additional Food provided Prey-Predator Systems involving Holling Type-III and Holling Type-IV Functional Responses

    Full text link
    In recent years, time-optimal control studies on additional food provided prey-predator systems have gained significant attention from researchers in the field of mathematical biology. In this study, we initially consider an additional food provided prey-predator model exhibiting Holling type-III functional response and the intra-specific competition among predators. We prove the existence and uniqueness of global positive solutions for the proposed model. We do the time optimal control studies with respect quality and quantity of additional food as control variables by transforming the independent variable in the control system. Making use of the Pontraygin maximum principle, we characterize the optimal quality of additional food and optimal quantity of additional food. We show that the findings of these time-optimal control studies on additional food provided prey-predator systems involving Holling type III functional response have the potential to be applied to a variety of problems in pest management. In the later half of this study, we consider an additional food provided prey-predator model exhibiting Holling type-IV functional response and study the above aspects for this system

    Exponential decay properties of a mathematical model for a certain fluid-structure interaction

    Full text link
    In this work, we derive a result of exponential stability for a coupled system of partial differential equations (PDEs) which governs a certain fluid-structure interaction. In particular, a three-dimensional Stokes flow interacts across a boundary interface with a two-dimensional mechanical plate equation. In the case that the PDE plate component is rotational inertia-free, one will have that solutions of this fluid-structure PDE system exhibit an exponential rate of decay. By way of proving this decay, an estimate is obtained for the resolvent of the associated semigroup generator, an estimate which is uniform for frequency domain values along the imaginary axis. Subsequently, we proceed to discuss relevant point control and boundary control scenarios for this fluid-structure PDE model, with an ultimate view to optimal control studies on both finite and infinite horizon. (Because of said exponential stability result, optimal control of the PDE on time interval (0,∞)(0,\infty) becomes a reasonable problem for contemplation.)Comment: 15 pages, 1 figure; submitte

    A Study of Qualitative Correlations Between Crucial Bio-markers and the Optimal Drug Regimen of Type-I Lepra Reaction: A Deterministic Approach

    Full text link
    Mycobacterium leprae is a bacteria that causes the disease Leprosy (Hansen's disease), which is a neglected tropical disease. More than 200000 cases are being reported per year world wide. This disease leads to a chronic stage known as Lepra reaction that majorly causes nerve damage of peripheral nervous system leading to loss of organs. The early detection of this Lepra reaction through the level of bio-markers can prevent this reaction occurring and the further disabilities. Motivated by this, we frame a mathematical model considering the pathogenesis of leprosy and the chemical pathways involved in Lepra reactions. The model incorporates the dynamics of the susceptible schwann cells, infected schwann cells and the bacterial load and the concentration levels of the bio markers IFN−γIFN-\gamma, TNF−αTNF-\alpha, IL−10IL-10, IL−12IL-12, IL−15IL-15 and IL−17IL-17. We consider a nine compartment optimal control problem considering the drugs used in Multi Drug Therapy (MDT) as controls. We validate the model using 2D - heat plots. We study the correlation between the bio-markers levels and drugs in MDT and propose an optimal drug regimen through these optimal control studies. We use the Newton's Gradient Method for the optimal control studies

    Stochastic Time-Optimal Control Studies for Additional Food provided Prey-Predator Systems involving Holling Type-IV Functional Response

    Full text link
    We consider an additional food provided prey-predator model exhibiting Holling type IV functional response with combined continuous white noise and discontinuous L\'evy noise. We prove the existence and uniqueness of global positive solutions for the considered model. By considering the quality and quantity of additional food as control parameters, we formulate a time-optimal control problem. We obtain the condition for the existence of an optimal control. Furthermore, making use of the arrow condition of the sufficient stochastic maximum principle, we characterize the optimal quality of additional food and optimal quantity of additional food. Numerical results are given to illustrate the theoretical findings with applications in biological conservation and pest management

    Stochastic Optimal and Time-Optimal Control Studies for Additional Food provided prey-predator Systems involving Holling Type-III Functional Response

    Full text link
    This paper consists of a detailed and novel stochastic optimal control analysis of a coupled non-linear dynamical system. The state equations are modeled as additional food provided prey-predator system with Holling Type-III functional response for predator and intra-specific competition among predators. We firstly discuss the optimal control problem as a Lagrangian problem with a linear quadratic control. Secondly we consider an optimal control problem in the time-optimal control setting. Stochastic maximum principle is used for establishing the existence of optimal controls for both these problems. Numerical simulations are performed based on stochastic forward-backward sweep methods for realizing the theoretical findings. The results obtained in these optimal control problems are discussed in the context of biological conservation and pest management

    Alternatives for Jet Engine Control

    Get PDF
    Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods
    • …
    corecore