5,604 research outputs found

    Mean-Field Stochastic Control with Elephant Memory in Finite and Infinite Time Horizon

    Full text link
    Our purpose of this paper is to study stochastic control problem for systems driven by mean-field stochastic differential equations with elephant memory, in the sense that the system (like the elephants) never forgets its history. We study both the finite horizon case and the infinite time horizon case. - In the finite horizon case, results about existence and uniqueness of solutions of such a system are given. Moreover, we prove sufficient as well as necessary stochastic maximum principles for the optimal control of such systems. We apply our results to solve a mean-field linear quadratic control problem. - For infinite horizon, we derive sufficient and necessary maximum principles. As an illustration, we solve an optimal consumption problem from a cash flow modelled by an elephant memory mean-field system

    Stochastic Control of Memory Mean-Field Processes

    Full text link
    By a memory mean-field process we mean the solution X(⋅)X(\cdot) of a stochastic mean-field equation involving not just the current state X(t)X(t) and its law L(X(t))\mathcal{L}(X(t)) at time tt, but also the state values X(s)X(s) and its law L(X(s))\mathcal{L}(X(s)) at some previous times s<ts<t. Our purpose is to study stochastic control problems of memory mean-field processes. - We consider the space M\mathcal{M} of measures on R\mathbb{R} with the norm ∣∣⋅∣∣M|| \cdot||_{\mathcal{M}} introduced by Agram and {\O}ksendal in \cite{AO1}, and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. - We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of \emph{(time-) advanced backward stochastic differential equations}, one of them with values in the space of bounded linear functionals on path segment spaces. - As an application of our methods, we solve a memory mean-variance problem as well as a linear-quadratic problem of a memory process

    Complex population dynamics as a competition between multiple time-scale phenomena

    Full text link
    The role of the selection pressure and mutation amplitude on the behavior of a single-species population evolving on a two-dimensional lattice, in a periodically changing environment, is studied both analytically and numerically. The mean-field level of description allows to highlight the delicate interplay between the different time-scale processes in the resulting complex dynamics of the system. We clarify the influence of the amplitude and period of the environmental changes on the critical value of the selection pressure corresponding to a phase-transition "extinct-alive" of the population. However, the intrinsic stochasticity and the dynamically-built in correlations among the individuals, as well as the role of the mutation-induced variety in population's evolution are not appropriately accounted for. A more refined level of description, which is an individual-based one, has to be considered. The inherent fluctuations do not destroy the phase transition "extinct-alive", and the mutation amplitude is strongly influencing the value of the critical selection pressure. The phase diagram in the plane of the population's parameters -- selection and mutation is discussed as a function of the environmental variation characteristics. The differences between a smooth variation of the environment and an abrupt, catastrophic change are also addressesd.Comment: 15 pages, 12 figures. Accepted for publication in Phys. Rev.

    Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning

    Full text link
    In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems

    Effects of noise on quantum error correction algorithms

    Full text link
    It has recently been shown that there are efficient algorithms for quantum computers to solve certain problems, such as prime factorization, which are intractable to date on classical computers. The chances for practical implementation, however, are limited by decoherence, in which the effect of an external environment causes random errors in the quantum calculation. To combat this problem, quantum error correction schemes have been proposed, in which a single quantum bit (qubit) is ``encoded'' as a state of some larger number of qubits, chosen to resist particular types of errors. Most such schemes are vulnerable, however, to errors in the encoding and decoding itself. We examine two such schemes, in which a single qubit is encoded in a state of nn qubits while subject to dephasing or to arbitrary isotropic noise. Using both analytical and numerical calculations, we argue that error correction remains beneficial in the presence of weak noise, and that there is an optimal time between error correction steps, determined by the strength of the interaction with the environment and the parameters set by the encoding.Comment: 26 pages, LaTeX, 4 PS figures embedded. Reprints available from the authors or http://eve.physics.ox.ac.uk/QChome.htm
    • …
    corecore