10,102 research outputs found

    Sequential Design for Optimal Stopping Problems

    Full text link
    We propose a new approach to solve optimal stopping problems via simulation. Working within the backward dynamic programming/Snell envelope framework, we augment the methodology of Longstaff-Schwartz that focuses on approximating the stopping strategy. Namely, we introduce adaptive generation of the stochastic grids anchoring the simulated sample paths of the underlying state process. This allows for active learning of the classifiers partitioning the state space into the continuation and stopping regions. To this end, we examine sequential design schemes that adaptively place new design points close to the stopping boundaries. We then discuss dynamic regression algorithms that can implement such recursive estimation and local refinement of the classifiers. The new algorithm is illustrated with a variety of numerical experiments, showing that an order of magnitude savings in terms of design size can be achieved. We also compare with existing benchmarks in the context of pricing multi-dimensional Bermudan options.Comment: 24 page

    On Nesting Monte Carlo Estimators

    Full text link
    Many problems in machine learning and statistics involve nested expectations and thus do not permit conventional Monte Carlo (MC) estimation. For such problems, one must nest estimators, such that terms in an outer estimator themselves involve calculation of a separate, nested, estimation. We investigate the statistical implications of nesting MC estimators, including cases of multiple levels of nesting, and establish the conditions under which they converge. We derive corresponding rates of convergence and provide empirical evidence that these rates are observed in practice. We further establish a number of pitfalls that can arise from naive nesting of MC estimators, provide guidelines about how these can be avoided, and lay out novel methods for reformulating certain classes of nested expectation problems into single expectations, leading to improved convergence rates. We demonstrate the applicability of our work by using our results to develop a new estimator for discrete Bayesian experimental design problems and derive error bounds for a class of variational objectives.Comment: To appear at International Conference on Machine Learning 201

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward
    • 

    corecore