9 research outputs found

    Sl-EDGE: Network Slicing at the Edge

    Full text link
    Network slicing of multi-access edge computing (MEC) resources is expected to be a pivotal technology to the success of 5G networks and beyond. The key challenge that sets MEC slicing apart from traditional resource allocation problems is that edge nodes depend on tightly-intertwined and strictly-constrained networking, computation and storage resources. Therefore, instantiating MEC slices without incurring in resource over-provisioning is hardly addressable with existing slicing algorithms. The main innovation of this paper is Sl-EDGE, a unified MEC slicing framework that allows network operators to instantiate heterogeneous slice services (e.g., video streaming, caching, 5G network access) on edge devices. We first describe the architecture and operations of Sl-EDGE, and then show that the problem of optimally instantiating joint network-MEC slices is NP-hard. Thus, we propose near-optimal algorithms that leverage key similarities among edge nodes and resource virtualization to instantiate heterogeneous slices 7.5x faster and within 0.25 of the optimum. We first assess the performance of our algorithms through extensive numerical analysis, and show that Sl-EDGE instantiates slices 6x more efficiently then state-of-the-art MEC slicing algorithms. Furthermore, experimental results on a 24-radio testbed with 9 smartphones demonstrate that Sl-EDGE provides at once highly-efficient slicing of joint LTE connectivity, video streaming over WiFi, and ffmpeg video transcoding

    Optimal and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks

    No full text
    Effective network slicing requires an infrastructure/network provider to deal with the uncertain demands and real-time dynamics of the network resource requests. Another challenge is the combinatorial optimization of numerous resources, e.g., radio, computing, and storage. This paper develops an optimal and fast real-time resource slicing framework that maximizes the long-term return of the network provider while taking into account the uncertainty of resource demands from tenants. Specifically, we first propose a novel system model that enables the network provider to effectively slice various types of resources to different classes of users under separate virtual slices. We then capture the real-time arrival of slice requests by a semi-Markov decision process. To obtain the optimal resource allocation policy under the dynamics of slicing requests, e.g., uncertain service time and resource demands, a Q-learning algorithm is often adopted in the literature. However, such an algorithm is notorious for its slow convergence, especially for problems with large state/action spaces. This makes Q-learning practically inapplicable to our case, in which multiple resources are simultaneously optimized. To tackle it, we propose a novel network slicing approach with an advanced deep learning architecture, called deep dueling, that attains the optimal average reward much faster than the conventional Q-learning algorithm. This property is especially desirable to cope with the real-time resource requests and the dynamic demands of the users. Extensive simulations show that the proposed framework yields up to 40% higher long-term average return while being few thousand times faster, compared with the state-of-the-art network slicing approaches

    Optimal and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks

    No full text
    Effective network slicing requires an infrastructure/network provider to deal with the uncertain demands and real-time dynamics of the network resource requests. Another challenge is the combinatorial optimization of numerous resources, e.g., radio, computing, and storage. This paper develops an optimal and fast real-time resource slicing framework that maximizes the long-term return of the network provider while taking into account the uncertainty of resource demands from tenants. Specifically, we first propose a novel system model that enables the network provider to effectively slice various types of resources to different classes of users under separate virtual slices. We then capture the real-time arrival of slice requests by a semi-Markov decision process. To obtain the optimal resource allocation policy under the dynamics of slicing requests, e.g., uncertain service time and resource demands, a Q-learning algorithm is often adopted in the literature. However, such an algorithm is notorious for its slow convergence, especially for problems with large state/action spaces. This makes Q-learning practically inapplicable to our case, in which multiple resources are simultaneously optimized. To tackle it, we propose a novel network slicing approach with an advanced deep learning architecture, called deep dueling, that attains the optimal average reward much faster than the conventional Q-learning algorithm. This property is especially desirable to cope with the real-time resource requests and the dynamic demands of the users. Extensive simulations show that the proposed framework yields up to 40% higher long-term average return while being few thousand times faster, compared with the state-of-the-art network slicing approaches
    corecore