94,643 research outputs found

    Optimal Joins Using Compact Data Structures

    Get PDF
    Worst-case optimal join algorithms have gained a lot of attention in the database literature. We now count with several algorithms that are optimal in the worst case, and many of them have been implemented and validated in practice. However, the implementation of these algorithms often requires an enhanced indexing structure: to achieve optimality we either need to build completely new indexes, or we must populate the database with several instantiations of indexes such as B+-trees. Either way, this means spending an extra amount of storage space that may be non-negligible. We show that optimal algorithms can be obtained directly from a representation that regards the relations as point sets in variable-dimensional grids, without the need of extra storage. Our representation is a compact quadtree for the static indexes, and a dynamic quadtree sharing subtrees (which we dub a qdag) for intermediate results. We develop a compositional algorithm to process full join queries under this representation, and show that the running time of this algorithm is worst-case optimal in data complexity. Remarkably, we can extend our framework to evaluate more expressive queries from relational algebra by introducing a lazy version of qdags (lqdags). Once again, we can show that the running time of our algorithms is worst-case optimal

    Optimal binary search trees with costs depending on the access paths

    Get PDF
    We describe algorithms for constructing optimal binary search trees, in which the access cost of a key depends on the k preceding keys which were reached in the path to it. This problem has applications to searching on secondary memory and robotics. Two kinds of optimal trees are considered, namely optimal worst case trees and weighted average case trees. The time and space complexities of both algorithms are O(nᵏ+²) and O(nᵏ+¹ ), respectively. The algorithms are based on a convenient decomposition and characterizations of sequences of keys which are paths of special kinds in binary search trees. Finally, using generating funcions, we present an exact analysis of the number of steps performed by the algorithms

    What Does Dynamic Optimality Mean in External Memory?

    Get PDF
    A data structure A is said to be dynamically optimal over a class of data structures ? if A is constant-competitive with every data structure C ? ?. Much of the research on binary search trees in the past forty years has focused on studying dynamic optimality over the class of binary search trees that are modified via rotations (and indeed, the question of whether splay trees are dynamically optimal has gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers have extended this to consider dynamic optimality over certain classes of external-memory search trees. In particular, Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-memory trees that support a notion of tree rotations, and then give an elegant data structure, called the Belga B-tree, that is within an O(log log N)-factor of being dynamically optimal over this class. In this paper, we revisit the question of how dynamic optimality should be defined in external memory. A defining characteristic of external-memory data structures is that there is a stark asymmetry between queries and inserts/updates/deletes: by making the former slightly asymptotically slower, one can make the latter significantly asymptotically faster (even allowing for operations with sub-constant amortized I/Os). This asymmetry makes it so that rotation-based search trees are not optimal (or even close to optimal) in insert/update/delete-heavy external-memory workloads. To study dynamic optimality for such workloads, one must consider a different class of data structures. The natural class of data structures to consider are what we call buffered-propagation trees. Such trees can adapt dynamically to the locality properties of an input sequence in order to optimize the interactions between different inserts/updates/deletes and queries. We also present a new form of beyond-worst-case analysis that allows for us to formally study a continuum between static and dynamic optimality. Finally, we give a novel data structure, called the J?llo Tree, that is statically optimal and that achieves dynamic optimality for a large natural class of inputs defined by our beyond-worst-case analysis
    • …
    corecore