643 research outputs found

    Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    Get PDF
    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil. The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters. The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more practical case of a microstrip line coil with two series capacitors is considered

    Microstrip Resonator for High Field MRI with Capacitor-Segmented Strip and Ground Plane

    Get PDF

    Design of Radio-Frequency Arrays for Ultra-High Field MRI

    Get PDF
    Magnetic Resonance Imaging (MRI) is an indispensable, non-invasive diagnostic tool for the assessment of disease and function. As an investigational device, MRI has found routine use in both basic science research and medicine for both human and non-human subjects. Due to the potential increase in spatial resolution, signal-to-noise ratio (SNR), and the ability to exploit novel tissue contrasts, the main magnetic field strength of human MRI scanners has steadily increased since inception. Beginning in the early 1980’s, 0.15 T human MRI scanners have steadily risen in main magnetic field strength with ultra-high field (UHF) 8 T MRI systems deemed to be insignificant risk by the FDA (as of 2016). However, at UHF the electromagnetic fields describing the collective behaviour of spin dynamics in human tissue assume ‘wave-like’ behaviour due to an increase in the processional frequency of nuclei at UHF. At these frequencies, the electromagnetic interactions transition from purely near-field interactions to a mixture of near- and far-field mechanisms. Due to this, the transmission field at UHF can produce areas of localized power deposition – leading to tissue heating – as well as tissue-independent contrast in the reconstructed images. Correcting for these difficulties is typically achieved via multi-channel radio-frequency (RF) arrays. This technology allows multiple transmitting elements to synthesize a more uniform field that can selectively minimize areas of local power deposition and remove transmission field weighting from the final reconstructed image. This thesis provides several advancements in the design and construction of these arrays. First, in Chapter 2 a general framework for modeling the electromagnetic interactions occurring inside an RF array is adopted from multiply-coupled waveguide filters and applied to a subset of decoupling problems encountered when constructing RF arrays. It is demonstrated that using classic filter synthesis, RF arrays of arbitrary size and geometry can be decoupled via coupling matrix synthesis. Secondly, in Chapters 3 and 4 this framework is extended for designing distributed filters for simple decoupling of RF arrays and removing the iterative tuning portion of utilizing decoupling circuits when constructing RF arrays. Lastly, in Chapter 5 the coupling matrix synthesis framework is applied to the construction of a conformal transmit/receive RF array that is shape optimized to minimize power deposition in the human head during any routine MRI examination

    Design and Simulation of Coils for High Field Magnetic Resonance Imaging and Spectroscopy

    Get PDF
    The growing availability of high-field magnetic resonance (MR) scanners has reignited interest in the in vivo investigation of metabolics in the body. In particular, multinuclear MR spectroscopy (MRS) data reveal physiological details inaccessible to typical proton (1H) scans. Carbon-13 (13C) MRS studies draw considerable appeal owing to the enhanced chemical shift range of metabolites that may be interrogated to elucidate disease metabolism and progression. To achieve the theoretical signal-to-noise (SNR) gains at high B0 fields, however, J-coupling from 1H-13C chemical bonds must be mitigated by transmitting radiofrequency (RF) proton-decoupling pulses. This irradiated RF power is substantial and intensifies with increased decoupling bandwidth as well as B0 field strength. The preferred 13C MRS experiment, applying broadband proton decoupling, thus presents considerable challenges at 7 T. Localized tissue heating is a paramount concern for all high-field studies, with strict Specific Absorption Rate (SAR) limits in place to ensure patient safety. Transmit coils must operate within these power guidelines without sacrificing image and spectral quality. Consequently, RF coils transmitting proton-decoupling pulses must be expressly designed for power efficiency as well as B1 field homogeneity. This dissertation presents innovations in high-field RF coil development that collectively improved the homogeneity, efficiency, and safety of high field 13C MRS. A review of electromagnetic (EM) theory guided a full-wave modeling study of coplanar shielding geometries to delineate design parameters for coil transmit efficiency. Next, a novel RF coil technique for achieving B1 homogeneity, dubbed forced current excitation (FCE), was examined and a coplanar-shielded FCE coil was implemented for proton decoupling of the breast at 7 T. To perform a series of simulation studies gauging SAR in the prone breast, software was developed to fuse a suite of anatomically-derived heterogeneous breast phantoms, spanning the standard four tissue density classifications, with existing whole-body voxel models. The effects of tissue density on SAR were presented and guidance for simulating the worst-case scenario was outlined. Finally, for improving capabilities of multinuclear coils during proton coil transmit, a high-power trap circuit was designed and tested, ultimately enabling isolation of 13C coil elements during broadband proton decoupling pulses. Together, this work advanced the hardware capabilities of high-field multinuclear spectroscopy with immediate applicability for performing broadband proton-decoupled 13C MRS in the breast at 7 T

    Design of a Transceive Coil Array for Parallel Imaging at 9.4T

    Get PDF
    The main goal of this thesis is to design and develop a transmit/receive (transceive) coil array for small animal imaging at 9.4T. The goal is achieved by following basic RF design principles with a methodical construction approach and demonstrating viable applications. As operational frequencies increase linearly with higher static fields, the wavelength approaches the size of the sample being imaged. The resulting standing wave mode deteriorates image homogeneity. Fortunately, with multi-channel coil arrays, the produced Bi field can be tailored to produce a homogeneous excitation in the region of interest, thus overcoming the so called dielectric resonance effect. We examined a solution to achieve a higher level of Bx homogeneity and we compared the improvement of RF wavelength effects reduction against the results obtained with a similar-sized conventional birdcage coil. An additional benefit of this design lies in the fact that the use of multiple receiving coil elements is necessary for the implementation of fast imaging acquisition techniques such as parallel imaging. This is possible because the distinct element sensitivities are used to reconstruct conventional images from undersampled (or accelerated) data. The greatest advantage of parallel imaging is thus the reduction of total acquisition time. In functional MRI (fMRI), single-shot EPI is one of the standard imaging technique. Unfortunately, EPI suffers from significant limitations, precisely because all of the data is acquired following a single RF excitation. As a result EPI images can manifest artifacts and blurring due to susceptibility mismatch, off-resonance effects and reduced signal at the edges of k-space. Fortunately, parallel imaging can be used to decrease such unwanted effects by reducing the total k-space data acquired. Presented in this thesis is the logical progression of the construction of a transceive coil from surface coil fundamentals to high field applications such as field focusing and parallel imaging techniques

    SAR Prediction and SAR Management for Parallel Transmit MRI

    Get PDF
    Parallel transmission enables control of the RF field in high-field Magnetic Resonance Imaging (MRI). However, the approach has also caused concerns about the specific absorption rate (SAR) in the patient body. The present work provides new concepts for SAR prediction. A novel approach for generating human body models is proposed, based on a water-fat separated MRI pre-scan. Furthermore, this work explores various approaches for SAR reduction

    Development and Optimization of Surface and Volume Radiofrequency Coils Suitable for Fast-Field-Cycling Magnetic Resonance Imaging (FFC-MRI)

    Get PDF
      Objective: To evaluate a modelling and design methodology employed in constructing and optimizing radiofrequency (RF) coils suitable for use with the whole-body fast-field-cycling Magnetic Resonance Imaging (FFC-MRI). It is also aimed at comparing the sensitivity and the signal-to-noise ratio (SNR) of the various types of surface RF coils constructed at the initial and final stages of this research. Methodology: An experimental study carried out at Biomedical MRI Laboratory at University of Aberdeen. Various designs of RF coil were constructed, optimized and tested with network/signal analyser for use with an experimental FFC - MRI scanner, operating at a detection magnetic field of 0.2 T (proton Larmor frequency of 8.5 MHz). The coils comprised circular loop (CL) RF – receive surface coil and a birdcage RF – transmit volume coil.  The intrinsic parameters of the CL coils were measured using a search-coil field probe and a network/signal analyser. Results: The CL surface coil constructed with copper wire had resonant frequency of 8.46 MHz and Quality factor (Q – factor) of 47.1 while the resonant frequency of the one constructed with litz wire was 8.54 MHz and Q - factor of 85.4 MHz. The intrinsic parameter of the birdcage volume coil was 8.48 MHz and Q - factor of 102. Conclusion: Bench testing of the coils showed promise as receiver and transmit coils for the FFC-MRI system &nbsp

    Master of Science

    Get PDF
    thesisThe purpose of this work was to design and construct a radio-frequency coil optimized for imaging the Optic Nerve (ON) on a Siemens 3T magnetic resonance imaging (MRI) scanner. The specific goals were to optimize signal sensitivity from the orbit to the optic chiasm and improve SNR over designs currently in use. The constructed coil features two fiberglass formers that can slide over each other to accommodate any arbitrary head size, while maintaining close coupling near the eyes and around the head in general. This design eliminates the air void regions that occur between the coil elements and the forehead when smaller heads are imaged in one-piece, nonadjustable coil formers. The 28 coil elements were placed using a soccer-ball pattern layout to maximize head coverage. rSNR profiles from phantom imaging studies show that the ON coil provides approximately 55% greater rSNR at the region of the optic chiasm and approximately 400% near the orbits compared to the 12-channel commercial coil. The improved rSNR in the optic nerve region allows performance of high resolution DTI, which provides a qualitative measurement for evaluating optic neuritis. Images from volunteer and patient studies with the ON coil reveal plaques that correspond well with the patient disease history of chronic bilateral optic neuritis. Correspondence of image findings with patient disease histories demonstrates that optic neuritis can be visualized and detected in patients using 3T MRI with advanced imaging coils, providing improved patient care

    A Practical Guide to Estimating Coil Inductance for Magnetic Resonance Applications

    Get PDF
    Radiofrequency (RF) coils are employed to transmit and/or receive signals in Magnetic Resonance (MR) systems. The design of home-made, organ-specific RF coils with optimized homogeneity and/or Signal-to-Noise Ratio (SNR) can be a plus in many research projects. The first step requires accurate inductance calculation, this depending on the conductor's geometry, to later define the tuning capacitor necessary to obtain the desired resonance frequency. To fulfil such a need it is very useful to perform a priori inductance estimation rather than relying on the time-consuming trial-and-error approach. This paper describes and compares two different procedures for coil inductance estimation to allow for a fast coil-prototyping process. The first method, based on calculations in the quasi-static approximation, permits an investigation on how the cross-sectional geometry of the RF coil conductors affects the total inductance and can be easily computed for a wide variety of coil geometries. The second approach uses a numerical full-wave method based on the Finite-Difference Time-Domain (FDTD) algorithm, and permits the simulation of RF coils with any complex geometry, including the case of multi-element phased array. Comparison with workbench measurements validates both the analytical and numerical results for RF coils operating within a wide field range (0.18–7 T)
    • …
    corecore