26,444 research outputs found

    Error Avoiding Quantum Codes and Dynamical Stabilization of Grover's Algorithm

    Get PDF
    An error avoiding quantum code is presented which is capable of stabilizing Grover's quantum search algorithm against a particular class of coherent errors. This error avoiding code consists of states only which are factorizable in the computational basis. Furthermore, its redundancy is smaller than the one which is achievable with a general error correcting quantum code saturating the quantum Hamming bound. The fact that this code consists of factorizable states only may offer advantages for the implementation of quantum gates in the error free subspace

    The AWGN Red Alert Problem

    Full text link
    Consider the following unequal error protection scenario. One special message, dubbed the "red alert" message, is required to have an extremely small probability of missed detection. The remainder of the messages must keep their average probability of error and probability of false alarm below a certain threshold. The goal then is to design a codebook that maximizes the error exponent of the red alert message while ensuring that the average probability of error and probability of false alarm go to zero as the blocklength goes to infinity. This red alert exponent has previously been characterized for discrete memoryless channels. This paper completely characterizes the optimal red alert exponent for additive white Gaussian noise channels with block power constraints.Comment: 13 pages, 10 figures, To appear in IEEE Transactions on Information Theor
    corecore