7 research outputs found

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network

    Low-complexity dynamic resource scheduling for downlink MC-NOMA over fading channels

    Full text link
    In this paper, we investigate dynamic resource scheduling (i.e., joint user, subchannel, and power scheduling) for downlink multi-channel non-orthogonal multiple access (MC-NOMA) systems over time-varying fading channels. Specifically, we address the weighted average sum rate maximization problem with quality-of-service (QoS) constraints. In particular, to facilitate fast resource scheduling, we focus on developing a very low-complexity algorithm. To this end, by leveraging Lagrangian duality and the stochastic optimization theory, we first develop an opportunistic MC-NOMA scheduling algorithm whereby the original problem is decomposed into a series of subproblems, one for each time slot. Accordingly, resource scheduling works in an online manner by solving one subproblem per time slot, making it more applicable to practical systems. Then, we further develop a heuristic joint subchannel assignment and power allocation (Joint-SAPA) algorithm with very low computational complexity, called Joint-SAPA-LCC, that solves each subproblem. Finally, through simulation, we show that our Joint-SAPA-LCC algorithm provides good performance comparable to the existing Joint-SAPA algorithms despite requiring much lower computational complexity. We also demonstrate that our opportunistic MC-NOMA scheduling algorithm in which the Joint-SAPA-LCC algorithm is embedded works well while satisfying given QoS requirements.Comment: 39 pages, 11 figure
    corecore