5 research outputs found

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor

    Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

    Full text link
    We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results. In particular, we prove quasi-NP-hardness of the following problems on nn-vertex hyper-graphs: * Coloring a 2-colorable 8-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 4-colorable 4-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 3-colorable 3-uniform hypergraph with (logn)Ω(1/logloglogn)(\log n)^{\Omega(1/\log\log\log n)} colors. In each of these cases, the hardness results obtained are (at least) exponentially stronger than what was previously known for the respective cases. In fact, prior to this result, polylog n colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for O(1)-colorable hypergraphs. The fundamental bottleneck in obtaining coloring inapproximability results using the low- degree long code was a multipartite structural restriction in the PCP construction of Dinur-Guruswami. We are able to get around this restriction by simulating the multipartite structure implicitly by querying just one partition (albeit requiring 8 queries), which yields our result for 2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform hypergraphs is obtained via a 'query doubling' method. For 3-colorable 3-uniform hypergraphs, we exploit the ternary domain to design a test with an additive (as opposed to multiplicative) noise function, and analyze its efficacy in killing high weight Fourier coefficients via the pseudorandom properties of an associated quadratic form.Comment: 25 page

    Some closure features of locally testable affine-invariant properties

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 31-32).We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less well-studied property, which creates some interesting affine-invariant properties over large domains, from properties over smaller domains. Previously such results were known for "single-orbit characterized" affine-invariant properties, which are known to be a subclass of locally testable ones, and are potentially a strict subclass. The fact that the intersection of locally-testable affine-invariant properties are locally testable could have been derived from previously known general results on closure of property testing under set-theoretic operations, but was not explicitly observed before. The closure under sum and lifts is implied by an affirmative answer to a central question attempting to characterize locally testable affine-invariant properties, but the status of that question remains wide open. Affine-invariant properties are clean abstractions of commonly studied, and extensively used, algebraic properties such linearity and low-degree. Thus far it is not known what makes affine-invariant properties locally testable - no characterizations are known, and till this work it was not clear if they satisfied any closure properties. This work shows that the class of locally testable affine-invariant properties are closed under some very natural operations. Our techniques use ones previously developed for the study of "single-orbit characterized" properties, but manage to apply them to the potentially more general class of all locally testable ones via a simple connection that may be of broad interest in the study of affine-invariant properties.by Alan Xinyu Guo.S.M

    Optimal testing of multivariate polynomials over small prime fields

    No full text
    Abstract — We consider the problem of testing if a given function f: F n q → Fq is close to a n-variate degree d polynomial over the finite field Fq of q elements. The natural, low-query, test for this property would be to pick the smallest dimension t = tq,d ≈ d/q such that every function of degree greater than d reveals this aspect on some t-dimensional affine subspace of F n q and to test that f when restricted to a random t-dimensional affine subspace is a polynomial of degree at most d on this subspace. Such a test makes only q t queries, independent of n. Previous works, by Alon et al. [1], and Kaufman and Ron [6] and Jutla et al. [5], showed that this natural test rejected functions that were Ω(1)-far from degree d-polynomials with probability at least Ω(q −t). (The initial work [1] considered only the case of q = 2, while the work [5] only considered the case of prime q. The results in [6] hold for all fields.) Thus to get a constant probability o
    corecore