8 research outputs found

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Non-Standard Imaging Techniques

    Get PDF
    The first objective of the thesis is to investigate the problem of reconstructing a small-scale object (a few millimeters or smaller) in 3D. In Chapter 3, we show how this problem can be solved effectively by a new multifocus multiview 3D reconstruction procedure which includes a new Fixed-Lens multifocus image capture and a calibrated image registration technique using analytic homography transformation. The experimental results using the real and synthetic images demonstrate the effectiveness of the proposed solutions by showing that both the fixed-lens image capture and multifocus stacking with calibrated image alignment significantly reduce the errors in the camera poses and produce more complete 3D reconstructed models as compared with those by the conventional moving lens image capture and multifocus stacking. The second objective of the thesis is modelling the dual-pixel (DP) camera. In Chapter 4, to understand the potential of the DP sensor for computer vision applications, we study the formation of the DP pair which links the blur and the depth information. A mathematical DP model is proposed which can benefit depth estimation by the blur. These explorations motivate us to propose an end-to-end DDDNet (DP-based Depth and Deblur Network) to jointly estimate the depth and restore the image . Moreover, we define a reblur loss, which reflects the relationship of the DP image formation process with depth information, to regularize our depth estimate in training. To meet the requirement of a large amount of data for learning, we propose the first DP image simulator which allows us to create datasets with DP pairs from any existing RGBD dataset. As a side contribution, we collect a real dataset for further research. Extensive experimental evaluation on both synthetic and real datasets shows that our approach achieves competitive performance compared to state-of-the-art approaches. Another (third) objective of this thesis is to tackle the multifocus image fusion problem, particularly for long multifocus image sequences. Multifocus image stacking/fusion produces an in-focus image of a scene from a number of partially focused images of that scene in order to extend the depth of field. One of the limitations of the current state of the art multifocus fusion methods is not considering image registration/alignment before fusion. Consequently, fusing unregistered multifocus images produces an in-focus image containing misalignment artefacts. In Chapter 5, we propose image registration by projective transformation before fusion to remove the misalignment artefacts. We also propose a method based on 3D deconvolution to retrieve the in-focus image by formulating the multifocus image fusion problem as a 3D deconvolution problem. The proposed method achieves superior performance compared to the state of the art methods. It is also shown that, the proposed projective transformation for image registration can improve the quality of the fused images. Moreover, we implement a multifocus simulator to generate synthetic multifocus data from any RGB-D dataset. The fourth objective of this thesis is to explore new ways to detect the polarization state of light. To achieve the objective, in Chapter 6, we investigate a new optical filter namely optical rotation filter for detecting the polarization state with a fewer number of images. The proposed method can estimate polarization state using two images, one with the filter and another without. The accuracy of estimating the polarization parameters using the proposed method is almost similar to that of the existing state of the art method. In addition, the feasibility of detecting the polarization state using only one RGB image captured with the optical rotation filter is also demonstrated by estimating the image without the filter from the image with the filter using a generative adversarial network

    Autonomous Optical Inspection of Large Scale Freeform Surfaces

    Get PDF

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined
    corecore