8 research outputs found

    Sub-Optimal Tracking in Switched Systems With Controlled Subsystems and Fixed-Mode Sequence Using Approximate Dynamic Programming

    Get PDF
    Optimal tracking in switched systems with controlled subsystem and Discrete-time (DT) dynamics is investigated. A feedback control policy is generated such that a) the system tracks the desired reference signal, and b) the optimal switching time instants are sought. For finding the optimal solution, approximate dynamic programming is used. Simulation results are provided to illustrate the effectiveness of the solution

    Sub-optimal Tracking in Switched Systems with Controlled Subsystems and Fixed-mode Sequence using Approximate Dynamic Programming

    Get PDF
    Optimal tracking in switched systems with controlled subsystem and Discrete-time (DT) dynamics is investigated. A feedback control policy is generated such that a) the system tracks the desired reference signal, and b) the optimal switching time instants are sought. For finding the optimal solution, approximate dynamic programming is used. Simulation results are provided to illustrate the effectiveness of the solution.Comment: 6 pages, 2 figures, This article has been accepted for oral presentation at 2019 Dynamic System and Control Conference. The content is the same as the final edition of the accepted paper. However, the presentation might be differen

    Designing stable neural identifier based on Lyapunov method

    Get PDF
    The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of MDNN is proposed. By proposed method, some constraints are obtained for learning rate. Lyapunov stability theory is applied to study the stability of the proposed algorithm. The Lyapunov stability theory is guaranteed the stability of the learning algorithm. In the proposed method, the learning rate can be calculated online and will provide an adaptive learning rare for the MDNN structure. Simulation results are given to validate the results

    Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    Get PDF
    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems --Abstract, page v
    corecore