

Journal of AI and Data Mining

Vol 3, No 2, 2015, 141-147. 10.5829/idosi.JAIDM.2015.03.02.03

 Designing stable neural identifier based on Lyapunov method

F. Alibakhshi1*, M. Teshnehlab2, M. Alibakhshi3 and M. Mansouri4

1. Control Department, Islamic Azad University South Tehran Branch, Tehran, Iran.

2. Center of Excellence in Industrial Control, K.N. Toosi University, Tehran, Iran.
3. Young Researchers & Elite Club, Borujerd Branch, Islamic Azad University, Borujerd, Iran.

4. Intelligent System Laboratory (ISLAB), Electrical & Computer engineering department, K.N. Toosi University, Tehran, Iran.

Received 29 August 2014; Accepted 21 September 2015

*Corresponding author: Alibakhshi.fatemeh@gmail.com (F. Alibakhshi)

Abstract

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues,

which attract many researchers’ interest in neural networks. This paper suggests adaptive gradient descent

algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability

of this algorithm. Also, stable learning algorithm for parameters of MDNN is proposed. By the proposed

method, some constraints are obtained for learning rate. Lyapunov stability theory is applied to study the

stability of the proposed algorithm. The Lyapunov stability theory guaranteed the stability of the learning

algorithm. In the proposed method, the learning rate can be calculated online and will provide an adaptive

learning rate for the MDNN structure. Simulation results are given to validate the results.

Keywords: Gradient Descent Algorithm, Identifier, Learning Rate, Lyapunov Stability Theory.

1. Introduction

In recent decades, soft computing is frequently

used in business and industry. Artificial neural

networks are essential parts of any computing

software [4]. The most widely used neural

network architecture is the multilayer feed

forward neural network. The most popular

approach for training the multilayer feed-forward

neural network (FNN) is the backpropagation

(BP) algorithm based on gradient descent (GD)

method. Determining an appropriate learning rate

for this algorithm is important. The training

algorithms (learning rules) could be defined as “a

procedure for modifying the weights and biases of

a network in order to train the network to perform

some tasks” [6,11]. The network model having a

good function approximation capability through

the training samples can well reflect the complex

nonlinear relationship between objects [17].

However, one problem inherent within them is

their convergence to local minima and the user set

acceleration rates and inertia factor parameters

that are sensitive to the learning process [1–3].

The FNNs with the BP learning algorithm have

been used successfully in pattern recognition,

optimization, classification, modeling,

identification and controlling [13,31]. However,

the problems of the slow convergence rate, local

minimum and instability are the most challenging

issues in this algorithm.

In recent decades, many efforts have been made to

improve the convergence of the BP algorithm.

There are some works to improve BP algorithm in

order to have online training [9,19-21]. For this

algorithm determining, an appropriate learning

rate is necessary, so that the learning process

become stable. If the learning rate is large,

learning may happen rapidly, but it may also

become unstable. To ensure stable learning, the

learning rate is small enough. Small learning rate

may also lead to a long training time. These

problems are inherent to the basic learning rule of

FNN that are based on GD optimization methods

[15,30]. The convergence properties of such

algorithms are discussed in [5,7,12,15,16,18], and

[22]. Learning algorithms based on GD includes

real-time recurrent learning (RTRL), ordered

derivative learning and so on [1].

Derivative-based methods have the advantage of

fast convergence, but they tend to converge to

local minima [2]. In addition, due to their

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

142

dependence on the analytical derivatives, they are

limited to specific objective functions, inferences,

and MFs [2].

Some papers [1-3,25,26] have investigated the

stability of fuzzy neural networks. The popular

method for stability analysis is Lyapunov

stability. Also, in [8,10,27,28] Lyapunov stability

theorem is considered.

The learning algorithm in neural and fuzzy neural

networks not only has the role of updating

parameters but also has influence on stability and

convergence. The stability and convergence of

learning algorithms are rarely investigated in the

papers. In this study, the stability of learning

algorithm is addressed in dynamic neural

networks.

In this paper, the main concern is using Lyapunov

stability approach for determining stable learning

rate in system identification via modified dynamic

neural network. The GD training the parameters

of update rule for MDNN is considered.

The rest of article is organized as follows: in

section 2, the structure of the dynamic neural

network is discussed. In section 3, MDNN

learning algorithm applied to process. Simulations

and results for three nonlinear systems are

presented in section 4. Section 5 presents

conclusions.

2. Dynamic neural network

In the feed forward artificial neural, a neuron

receives its inputs from other neurons. The weight

sum of these signals is the input to the activation

function. The resulting value of the activation

function is the output of a neuron. This output is

branched out to other processing units. This

simple model of the artificial neuron ignores

many of the characteristics of its biological

counterpart. For example, it does not take into

account time delays that affect the dynamics of

the system [23]. The dynamic neural network

(DNN) for the first time proposed by Gupta [24].

The basic structure of dynamic neuron (DN) is

shown in figure 1.

Figure 1. Structure of dynamic neuron [29].

Each neuron composed of two units: the

inhibitory (negative) unit and excitatory (positive)

unit. The inhibitory units received the summation

of positive inputs, a delay of own outputs and

abstraction a delay of excitatory outputs by

multiple to determined weights. The excitatory

units received the summation of negative inputs, a

delay of own outputs and abstraction a delay of

initiatory outputs by multiple to the determined

weights [29].

The final output of the neuron can be written as

follow:

     T E IO t O t O t  (1)

where, EO , IO are represent the output of

excitatory (En e t) and inhibitory units (In e t),

respectively and can be written as:

       0 11 121 1    E E E In e t t a X t a n e t t b n e t t
(2)

       0 11 121 1I I I Ene t t b X t b ne t t a ne t t     (3)

And:

     T E Ine t t ne t t ne t t  (4)

where, EX , IX are the positive and negative

inputs, respectively and the parameters of 0a , 11a

, 12a , 0b , 11b , 12b are the weights of DN.

3. Stability analysis of learning algorithm

Suppose an MDNN as an identifier shown in

figure 2.

Figure 2. Modified dynamic neural network as the

identifier.

Details of the MDNN network are illustrated in

the figure 3.

 Figure 3. Modified dynamic neural network architecture.

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

143

Assume that the parameters of the MDNN are

changed with time. In figure 3,

       1 2, , . . . ,
T

pW k w k w k w k   
 the is the

weight vector of the MDNN output layer,  2O k

is the final output of MDNN and  1O k is the

output of hidden layer of MDNN,  TO k is the

output of DN neuron. DN structure of neurons is

shown in figure 1. This network has n inputs in

the input layer, p DN in the hidden layer and one

conventional neuron in the output layer.  1 .f

and  2 .f are nonlinear activation functions.

According to figure 3 it is obvious that:

         1 1 2 2 1, TO k f net k O k f WO k (5)

       2 2 1

TO k O k f Wf net k  (6)

The cost function for the training algorithm is

defined as:

         21
,

2
pe k y k O k E k e k  

(7)

where,  e k is real output error,  py k is the

output of plant,  O k is the final output of

MDNN. Weights of output layer are updated by

GD method as follows:

     
 

 
1 o

E k
W k W k k

W k


 
    

  

(8)

where,  o k is the learning rate parameters of the

output layer, and we have:

 

 

 

 

 

 

 

 

 
 

 

        
       
             

 
   

  

E k E k e k O k

W k e k O k W k

O k
e k

W k

(9)

From (8) and (9), it will be inferred that:

       
 

 

     
 

 

1 o

o

O k
W k W k k e k

W k

O k
W k k e k

W k





 
    

  

 
   

  

(10)

 
 

 W

O k
D k

W k





(11)

And the updating rule for hidden layer parameters

by GD method is as follows:

     
 

 
1 h

E k
k k k

k


 
      

  

(12)

where, 0 11 12 0 11 12a a a b b b     is the weight

vector and,  h k is the learning rate of DN.

Assuming      1k k k     the weights

are updated as follows:

     
 

 0 0

0

1 
 

    
  

h
E k

a k a k k
a k

(13)

 

 

 

 

 

 

 

 

 
 

 

0 0

0

        
       
             

 
   

  

E k E k e k O k

a k e k O k a k

O k
e k

a k

(14)

From (13) and (14), it will be inferred that:

     
 

 0

0

h
O k

a k k e k
a k


 

   
  

(15)

It can also be written as:

     
 

 11

11

h
O k

a k k e k
a k


 

   
  

(16)

     
 

 12

12

h
O k

a k k e k
a k


 

   
  

(17)

     
 

 0

0

h
O k

b k k e k
b k


 

   
  

(18)

     
 

 11

11

h
O k

b k k e k
b k


 

   
  

(19)

     
 

 12

12

h
O k

b k k e k
b k


 

   
  

(20)

 
 

  0 11 12 0 11 12

O k
D k a a a b b b

k



     


(21)

In this paper, candidate Lyapunov function is a

function of error which is associated with GD

based learning algorithms. This means when

Lyapunov function converges to zero GD based

learning algorithm is converged to zero too.

Now a discrete Lyapunov function is considered

as follows:

   21

2
V k e k

(22)

Then, the variation of Lyapunov function on each

iteration will be:

     

    

         

      

2 2

1

1
1

2

1
1 1

2

1
2

2

   

  

    

   

V k V k V k

e k e k

e k e k e k e k

e k e k e k

(23)

The variation of error can be approximated by:

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

144

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

31 2

4

0 11 12

0 11 12

0

0

 



                                                                 

  
   
    

T T T T

T

e k e k e k e k
e k W k tr a k tr a k tr a k

W k a k a k a k

e k
tr b k

b k

 

 
 

 

 
 

5 6

11 12

11 12

  
                                



T T

e k e k
tr b k tr b k

b k b k

(24)

where, the  .tr is the trace of matrices. From (10)

it will be concluded that:

 

 
 

 

 

 

 
   

 

 

   
 

 

 

 

     
2







    
    

       

    
    
       

    
     

       

 

T T

T

o

T

o

o

W

e k e k
W k

W k O k

O k O k
k e k

W k W k

O k O k
k e k

W k W k

k e k D k

(25)

From (15) and (21), 1 obtained as follows:

 

 
 

 

 

 

 

   
 

 

   
 

 

 

 

   
 

 

 

 

 

1 0

0

0

0

0 0

0 0











  
   
    

    
    
        

 
  

   

     
      

         

     
      
         

 

T

T T

h

T

h

T

h

h

e k
tr a k

a k

e k O k
tr

O k a k

O k
k e k

a k

O k O k
tr k e k

a k a k

O k O k
k e k tr

a k a k

k    
0

2

a
F

e k D k

(26)

Let .
F

 be Frobenius norm. Thus, using (16) to

(20) and (21), the following equations are

obtained:

     
11

2

2   h

a
F

k e k D k
(27)

     
12

2

3   h

a
F

k e k D k
(28)

     
0

2

4   h

b
F

k e k D k
(29)

     
11

2

5   h

b
F

k e k D k
(30)

     
12

2

6

h

b
F

k e k D k   (31)

So, it can be written as:

       

       

   

    

0 11

12 0

11 12

2

2 2

22

2 2





  

 

 

 

o

W

h

a a
FF

a b
F F

b b
F F

e k k e k D k

k e k D k D k

D k D k

D k D k

(32)

From (23) and (32), it will be inferred that:

        

                     

                       

           

0 11 12 0 11 12

0 11 12 0 11 12

0 11

2 22 2 2 22

2 22 2 2 22

222

1
2

2

1

2

2

1

2

 

 

 

    

  
         

  

  
         

  

   

o h
W a a a b b b

F F F FF F

o h
W a a a b b b

F F F FF F

o h
W a a

FF

V k e k e k e k

k e k D k k e k D k D k D k D k D k D k

e k k e k D k k e k D k D k D k D k D k D k

e k k D k k D k D k        

                 

12 0 11 12

0 11 12 0 11 12

22 2 2 2

2 22 2 2 22
2 0 

  
     

  

  
          

  

a b b b
F F FF

o h
W a a a b b b

F F F FF F

D k D k D k D k

k D k k D k D k D k D k D k D k

(33)

Then:

       

            0 11 12 0 11 12

2

2 22 2 2 2

0 0

2

     

     

o h

W

a a a b b b
F F F FFF

V k k D k k

D k D k D k D k D k D k

(34)

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

145

If we choose    o hk k  then:

   
             

0 11 12 0 11 12

2 22 2 2 22

2
0    

     

o h

W a a a b b b
F F F FF F

k k

D k D k D k D k D k D k D k
(35)

From (35) we choose the learning rates as follows:

 
 

2

2
0  o

W

k
D k

(36)

 
             

0 11 12 0 11 12

2 22 2 2 22

2
0

6

 
 

      
 

h

W a a a b b b
F F F FF F

k

D k D k D k D k D k D k D k

(37)

4. Simulation and results

In this section, the proposed algorithm in sections

3 is simulated on three nonlinear systems as

examples 1, 2 and 3.

In each example, there are 1000 random numbers

which divide to training and test data sets.

Dynamic neural network is used as identifier as

illustrated in figure 2.

Example 1: Identification of a nonlinear

dynamical system. In this example, the nonlinear

plant with multiple time-delays is described as

[3]:

       

   

1 , 1 , 2 ,

, 1

   



y k f y k y k y k

u k u k

(38)

where, ()u k and ()y k are the system input and

output, respectively.

Where:

 
 1 2 3 5 3 4

1 2 3 4 5 2 3

2 3

1
, , , ,

1

 


 

x x x x x x
f x x x x x

x x

(39)

For simulation of this nonlinear system, a neural

network with the structure depicted in figure 2 is

employed, where n is assumed to be 5, and p is

taken as 15. In this neural network, it has been

assumed that 2f is a linear function, and 1f is a

symmetric sigmoid function defined as below:

 1 1

1










net

net

e
f net

e

(40)

where, net is the weighted sum of the inputs. For

comparison, the mean square error (MSE)

criterion has been used.

In the simulation results, figure 4 indicates

convergence with fulfillment of the stability

conditions.

Example 2: This system of equation is as follows

[14]:

 
 

 
 2

2
1

1
  



y k
y k u k

y k

(41)

Figure 4. Learning rate is smaller than the upper limit

bound.

where, ()u k and ()y k are the system input and

output, respectively.

For simulation of this nonlinear system, a neural

network with the structure depicted in figure 2 is

employed, where n is assumed to be 2, and p is

taken as 10.

In the simulation results, figure 5 indicates

convergence with fulfillment of the stability

conditions.

Figure 5. Learning rate is smaller than the upper limit

bound.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

epochs
m

s
e
 o

f
tr

a
n
in

g
 d

a
ta

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

epochs

m
s
e
 o

f
te

s
ti
n
g
 d

a
ta

0 10 20 30 40 50 60 70 80 90
0.01

0.02

0.03

0.04

0.05

epochs

m
s
e
 o

f
tr

a
n
in

g
 d

a
ta

0 10 20 30 40 50 60 70 80 90
0.04

0.05

0.06

0.07

0.08

epochs

m
s
e
 o

f
te

s
ti
n
g
 d

a
ta

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

146

Example 3: This system of equation is as follows

[1-3]:

        1 0.3 0.6 1y k y k y k f u k     (42)

where, ()u k and ()y k are the system input and

output, respectively. The unknown function (.)f

is described as follows:

       0.6sin 0.3sin 3 0.1sin 3    f u u u u (43)

For simulation of this nonlinear system, a neural

network with the structure depicted in figure 2 is

employed, where n is assumed to be 3, and p is

taken as 15. In the simulation results, figure 6

indicates convergence with fulfillment of the

stability conditions.

Figure 6. Learning rate is smaller than the upper limit

bound.

5. Conclusions

In this paper, for permanent learning of modified

dynamic neural network parameters online,

Lyapunov stability theory is employed. In this

learning algorithm, the associated parameters are

trained according to descending gradient. Taking

advantage of Lyapunov stability theory, some

regions are defined, and through selection of the

permanent training rate out of these regions, it can

be guaranteed that the learning algorithm is stable

throughout the identification process. The results

of the obtained theory have been simulated for

three examples. The simulation results suggest

that in the training process, the system is stable

and the convergence rate is desirable. This

procedure can be employed in neural controllers.

References
[1] AliyariShoorehdeli, M., Teshnehlab, M.,

KhakiSedigh, A. & AhmadiehKhanesar M. (2009).

Identification using ANFIS with intelligent hybrid

stable learning algorithm approaches and stability

analysis of training methods. Elsevier, Applied Soft

Computing 9, pp. 833–850.

[2] AliyariShoorehdeli, M., Teshnehlab, M. &

KhakiSedigh, A. (2009). Training ANFIS as an

identifier with intelligent hybrid stable learning

algorithm based on particle swarm optimization and

extended Kalman filter. Elsevier, Fuzzy

SetsandSystems160, pp. 922 –948.

[3] AliyariShoorehdeli, M., Teshnehlab, M. &

KhakiSedigh, A. (2009). Identification using ANFIS

with intelligent hybrid stable learning algorithm

approaches. Springer, Neural Comput & Applic 18, pp.

157–174.

[4] Bonissone, P. P., Goebl, K. Y. T. & khedkar, P. S.

(1999). Parameter convergence and learning curves for

neural networks. Proc, of IEEE, vol. 87, no. 9, pp.

1641-1667.

[5] Fine, T. L., Goebl, S. & khedkar, P. S. (1997).

Hybrid Soft Computing System: Industrial and

Commercial Application. Neural Computation, pp.

747-769.

[6] Hagan, M. T., Demuth, H. B. & Beale, M. (1996).

Neural network design, McGraw – Hill publishing

company. First edition.

[7] Hagan, M. T. & Menhaj, M. (1994). Training

feedforward networks with Marquardt algorithm.

IEEE Transactions on Neural Networks, vol. 5, no. 6,

pp. 989-993.

[8] Zhang, T., Ge, S. S. & Hang, C. C. (May 2000).

Adaptive neural network control for strict-feedback

nonlinear systems using back stepping design. Elsevier

Science Ltd., pp. 1835-1846.

[9] Hedjar, R. (2007). Online Adaptive Control of Non-

linear Plants Using Neural Networks with Application

to Temperature Control System. J. King Saud Univ.,

vol. 19, Comp. & Info. Sci, pp. 75-94.

[10] Ge, S. S., Hang, C. C. & Zhang, T. (June 2000).

Stable Adaptive Control for Nonlinear Multivariable

Systems with a Triangular Control Structure. IEEE

Transactions on Automatic Control, vol. 45, no. 6.

[11] Kazem, B. I. & Zangana, N. F. H. (2007). A

Neural Network Based Real Time Controller for

Turning Process. Jordan Journal of Mechanical and

Industrial Engineering, ISSN 1995-6665, pp 43 – 55.

[12] Kuan, C. M. & Hornik, K. (1991). Dynamical

systems using neural networks. IEEE Transactions on

Neural Networks, vol. 1, no. 1, pp. 4-27.

[13] Meireles, M. R. G., Almeida, P. E. M. & Simões,

M .G. (2003). A Comrehensive Review For Industrial

Applicability Of Artifical Neural Networks. IEEE

Trans. Ind. Electron, vol. 50, no. 3, pp. 585 – 601.

[14] Mandic, D. P., Hanna, A. I. & Razaz, Moe.

(2001). A Normalized GraDient Descent Algorithm

For Nonlinear Adaptive Filters Using A Gradient

Adaptive Step Size. IEEE Signal Processing, Letters .

vol. 1, no. 1.

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

epochs

m
s
e
 o

f
tr

a
n
in

g
 d

a
ta

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

epochs

m
s
e
 o

f
te

s
ti
n
g
 d

a
ta

Alibakhshi et al./ Journal of AI and Data Mining, Vol 3, No 2, 2015.

147

[15] Sha, D. & Bajic, V. B. (2011). An Optimized

Recursive Learning Algorithm for Three-Layer Feed

forward Neural Networks For MIMO Nonlinear

System Identifications. Intelligent Automation and Soft

Computing, vol. 17, no. x, pp. 1-15.

[16] Song, Q. & Xiao, J. (1997). On the Convergence

Performance of Multilayered NN Tracking Controller.

Neural & Parallel Computation, vol. 5, no. 3, pp. 461-

470.

[17] Sun, X., Liu, Q. & Zhang, L. (2011). A BP Neural

Network Model Based on Genetic Algorithm for

Comprehensive Evaluation. IEEE, 978-1-4577-0856.

[18] Torii, M. & Hagan, M. T. (2002). Stability of

steepest descent with momentum for quadratic

functions. IEEE Trans. On Neural Networks, vol. 13,

no. 3, pp. 752-756.

[19] Velagic, J., Osmic N. & Lacevic, B. (2008).

Neural Network Controller for Mobile Robot Motion

Control, World Academy of Science. Engineering and

Technology 47.

[20] Velagic, J. & Hebibovic, M. (2004). Neuro-Fuzzy

Architecture for Identification and Tracking Control of

a Robot. In Proc, The World Automation Congress -

5th International Symposium on Soft Computing for

Industry ISSCI2004, June 28 - July 1, Sevilla Spain,

paper no. ISSCI-032, pp. 1-9.

[21] Velagic, J., Lacevic, B. & Hebibovic, M. (2005).

On-Line Identification of a Robot Manipulator Using

Neural Network with an Adaptive Learning Rate. in

Proc. 16th IFAC World Congress, 03-08 June, Prague,

Czech Republic, no. 2684, pp. 1-6.

[22] Wu, W., Feng, G. R., Li, Z. X. & Xu, Y. S.

(2005). Deterministic Convergence of an Online

Gradient Method for BP Neural Networks. IEEE

Transaction on Neural Networks, vol. 16, no. 3, pp.

533-540.

[23] Wasserman, P. D. (1989). Neural Computing:

Theory and Practice, Van Nostrand, New York.

[24] Gupta, M. M. & Rae, D. H. (1993). Dynamic

Neural Units with Applications to the Control of

Unknown Nonlinear Systems. 7th Journal of intelligent

and Fuzzy Systems, vol. 1, no. 1, pp. 73-92, Jan.

[25] Kim, W. C., Ahn, S. C. & Kwon, W. H. (1995).

Stability Analysis and Stabilization of Fuzzy State

Space Models. Fuzzy Sets Syst. 71 (April (1)), pp.131–

142.

[26] Yu, W. & Li, X. (June 2003), Fuzzy neural

modeling using stable learning algorithm. In:

Proceedings of the American Control Conference, pp.

4542–4547.

[27] Jafarov, E. M. (August 2013). On Stability Delay

Bounds of Simple Input-delayed Linear and Non-

Linear systems: Computational Results. International

Journal of Automation and Computing (IJAC), vol. 10,

no. 4, pp. 327–334.

[28] Sun, H. Y., Li, N., Zhao, De. P. & Zhang, Q. L.

(August 2013). Synchronization of Complex Networks

with Coupling Delays via Adaptive Pinning

Intermittent Control. International Journal of

Automation and Computing (IJAC), vol. 10, no. 4, pp.

312–318.

[29] Sabahi, K., Nekoui, M. A., Teshnehlab, M.,

Aliyari M. & Mansouri, M. (July 2007). Load

Frequency Control in Interconnected Power System

Using Modified Dynamic Neural Networks.

Proceedings of the 15th Mediterranean Conference on

Control & Automation, Athens - Greece.

[30] Widrow, B. & Lehr, M. A. (1990). Adaptive

Neural Networks: Perceptron, Madaline, and Back

propagation. Proceedings of the IEEE, Special Issue on

Neural Networks, I: Theory & Modeling; 78(9),

pp.1415-1442.

[31] Heydari, A. & Balakrishnan, S. N. (2014).

Optimal Switching and Control of Nonlinear Switching

Systems Using Approximate Dynamic Programming.

IEEE Transactions on Neural Networks and Learning

Systems, vol. 25, no. 6, pp. 1106-1117.

 نشریه هوش مصنوعی و داده کاوی

 لیاپانوف روش اساس بر پایدار عصبی شناساگر طراحی

 4محمد منثوریو 3مهدی علی بخشی، 2محمد تشنه لب، *1بخشی علی فاطمه

 .ایران، ، تهرانجنوب تهران واحد اسلامی آزاد دانشگاه، مهندسی و فنی دانشکده 1

 .ایران، ، تهرانطوسی نصیرالدین خواجه صنعتی دانشگاه، قطب علمی کنترل صنعتی 2

 .ایران، باشگاه پژوهشگران جوان و نخبگان، بروجرد، دانشگاه آزاد اسلامی واحد بروجرد 3

 ایران.، تهران ،طوسی نصیرالدین خواجه صنعتی دانشگاه، و کامپیوتر برق دانشکده، های هوشمندآزمایشگاه سیستم 4

 90/82/9802 ؛ پذیرش92/80/9802 ارسال

 چکیده:

 متنهوعی تحقیقها راسهتا ایه در کهه باشد،می کنترل مهندسی در پراهمیت موارد از یکی کنندهکنترل و شناساگر عصبی هایشبکه در پایداری بحث

 یهادگیری قهوانی بها تطبیقهی نزولهی گرادیان الگوریتم مقاله ای در. است بوده معمولی عصبی هایشبکه چوب چهار در عمدتاً که است پذیرفته صور

 نهر بهرای هاییمحهدوده پیشهنهادی روش توسط. است شده بررسی آموزشی الگوریتم پایداری و شده پیشنهاد پویا عصبی شبکه پارامترهای برای پایدار

 الگهوریتم پایهداری ،لیاپهانوف پایهداری قضیه. شودمی برده بکار پیشنهادی الگوریتم پایداری بررسی برای لیاپانوف پایداری قضیه. شوندمی تعریف آموزش

. شهودمهی بهرده بکهار پویا عصبی شبکه برای تطبیقی آموزش نر و محاسبه بهنگام بصور آموزش نر ،پیشنهادی روش در. ندکمی تضمی را آموزش

 .دهدمی نشان را نتایج صحت سازیشبیه نتایج

 .آموزش نر لیاپانوف، پایداری قضیه شناساگر، ،نزولی گرادیان الگوریتم :کلمات کلیدی

