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Abstract 

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues, 

which attract many researchers’ interest in neural networks. This paper suggests adaptive gradient descent 

algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability 

of this algorithm. Also, stable learning algorithm for parameters of MDNN is proposed. By the proposed 

method, some constraints are obtained for learning rate. Lyapunov stability theory is applied to study the 

stability of the proposed algorithm. The Lyapunov stability theory guaranteed the stability of the learning 

algorithm. In the proposed method, the learning rate can be calculated online and will provide an adaptive 

learning rate for the MDNN structure. Simulation results are given to validate the results. 
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1. Introduction 

In recent decades, soft computing is frequently 

used in business and industry. Artificial neural 

networks are essential parts of any computing 

software [4]. The most widely used neural 

network architecture is the multilayer feed 

forward neural network. The most popular 

approach for training the multilayer feed-forward 

neural network (FNN) is the backpropagation 

(BP) algorithm based on gradient descent (GD) 

method. Determining an appropriate learning rate 

for this algorithm is important. The training 

algorithms (learning rules) could be defined as “a 

procedure for modifying the weights and biases of 

a network in order to train the network to perform 

some tasks” [6,11]. The network model having a 

good function approximation capability through 

the training samples can well reflect the complex 

nonlinear relationship between objects [17]. 

However, one problem inherent within them is 

their convergence to local minima and the user set 

acceleration rates and inertia factor parameters 

that are sensitive to the learning process [1–3]. 

The FNNs with the BP learning algorithm have 

been used successfully in pattern recognition, 

optimization, classification, modeling, 

identification and controlling [13,31]. However, 

the problems of the slow convergence rate, local 

minimum and instability are the most challenging 

issues in this algorithm. 

In recent decades, many efforts have been made to 

improve the convergence of the BP algorithm. 

There are some works to improve BP algorithm in 

order to have online training [9,19-21]. For this 

algorithm determining, an appropriate learning 

rate is necessary, so that the learning process 

become stable. If the learning rate is large, 

learning may happen rapidly, but it may also 

become unstable. To ensure stable learning, the 

learning rate is small enough. Small learning rate 

may also lead to a long training time. These 

problems are inherent to the basic learning rule of 

FNN that are based on GD optimization methods 

[15,30]. The convergence properties of such 

algorithms are discussed in [5,7,12,15,16,18], and 

[22]. Learning algorithms based on GD includes 

real-time recurrent learning (RTRL), ordered 

derivative learning and so on [1]. 

Derivative-based methods have the advantage of 

fast convergence, but they tend to converge to 

local minima [2]. In addition, due to their 
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dependence on the analytical derivatives, they are 

limited to specific objective functions, inferences, 

and MFs [2]. 

Some papers [1-3,25,26] have investigated the 

stability of fuzzy neural networks. The popular 

method for stability analysis is Lyapunov 

stability. Also, in [8,10,27,28] Lyapunov stability 

theorem is considered.  

The learning algorithm in neural and fuzzy neural 

networks not only has the role of updating 

parameters but also has influence on stability and 

convergence. The stability and convergence of 

learning algorithms are rarely investigated in the 

papers. In this study, the stability of learning 

algorithm is addressed in dynamic neural 

networks.  

In this paper, the main concern is using Lyapunov 

stability approach for determining stable learning 

rate in system identification via modified dynamic 

neural network. The GD training the parameters 

of update rule for MDNN is considered.  

The rest of article is organized as follows: in 

section 2, the structure of the dynamic neural 

network is discussed. In section 3, MDNN 

learning algorithm applied to process. Simulations 

and results for three nonlinear systems are 

presented in section 4. Section 5 presents 

conclusions.  

 

2. Dynamic neural network 

In the feed forward artificial neural, a neuron 

receives its inputs from other neurons. The weight 

sum of these signals is the input to the activation 

function. The resulting value of the activation 

function is the output of a neuron. This output is 

branched out to other processing units. This 

simple model of the artificial neuron ignores 

many of the characteristics of its biological 

counterpart. For example, it does not take into 

account time delays that affect the dynamics of 

the system [23]. The dynamic neural network 

(DNN) for the first time proposed by Gupta [24]. 

The basic structure of dynamic neuron (DN) is 

shown in figure 1.  

 

Figure 1. Structure of dynamic neuron [29]. 

Each neuron composed of two units: the 

inhibitory (negative) unit and excitatory (positive) 

unit. The inhibitory units received the summation 

of positive inputs, a delay of own outputs and 

abstraction a delay of excitatory outputs by 

multiple to determined weights. The excitatory 

units received the summation of negative inputs, a 

delay of own outputs and abstraction a delay of 

initiatory outputs by multiple to the determined 

weights [29]. 

The final output of the neuron can be written as 

follow: 

     T E IO t O t O t   (1) 
 

where, EO , IO  are represent the output of 

excitatory ( En e t ) and inhibitory units ( In e t ), 

respectively and can be written as: 
 

       0 11 121 1    E E E In e t t a X t a n e t t b n e t t  
(2) 

       0 11 121 1I I I Ene t t b X t b ne t t a ne t t      (3) 
 

And: 

     T E Ine t t ne t t ne t t   (4) 
 

where, EX , IX  are the positive and negative 

inputs, respectively and the parameters of 0a , 11a

, 12a , 0b , 11b , 12b  are the weights of DN. 

 

3. Stability analysis of learning algorithm  

Suppose an MDNN as an identifier shown in 

figure 2. 

 
Figure 2. Modified dynamic neural network as the 

identifier. 

 

Details of the MDNN network are illustrated in 

the figure 3. 

 

 Figure 3. Modified dynamic neural network architecture. 
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Assume that the parameters of the MDNN are 

changed with time. In figure 3, 

       1 2, , . . . ,
T

pW k w k w k w k   
 the is the 

weight vector of the MDNN output layer,  2O k  

is the final output of MDNN and  1O k is the 

output of hidden layer of MDNN,  TO k  is the 

output of DN neuron. DN structure of neurons is 

shown in figure 1. This network has n inputs in 

the input layer, p DN in the hidden layer and one 

conventional neuron in the output layer.  1 .f
 
 

and  2 .f  are nonlinear activation functions. 

According to figure 3 it is obvious that: 
 

         1 1 2 2 1, TO k f net k O k f WO k  (5) 

       2 2 1

TO k O k f Wf net k   (6) 

 

The cost function for the training algorithm is 

defined as: 

         21
,

2
pe k y k O k E k e k    

(7) 

 

where,  e k is real output error,  py k  is the 

output of plant,  O k  is the final output of 

MDNN. Weights of output layer are updated by 

GD method as follows: 

     
 

 
1 o

E k
W k W k k

W k


 
    

  

 
(8) 

 

where,  o k is the learning rate parameters of the 

output layer, and we have: 
 

 

 

 

 

 

 

 

 

 
 

 

        
       
             

 
   

  

E k E k e k O k

W k e k O k W k

O k
e k

W k

 

(9) 

From (8) and (9), it will be inferred that:  

 

       
 

 

     
 

 

1 o

o

O k
W k W k k e k

W k

O k
W k k e k

W k





 
    

  

 
   

  

 

(10) 

 

 
 

 W

O k
D k

W k





 
(11) 

 

And the updating rule for hidden layer parameters 

by GD method is as follows: 

     
 

 
1 h

E k
k k k

k


 
      

  

 
(12) 

where, 0 11 12 0 11 12a a a b b b      is the weight 

vector and,   h k  is the learning rate of DN. 

Assuming       1k k k      the weights 

are updated as follows: 

     
 

 0 0

0

1 
 

    
  

h
E k

a k a k k
a k

 
(13) 

 

 

 

 

 

 

 

 

 
 

 

0 0

0

        
       
             

 
   

  

E k E k e k O k

a k e k O k a k

O k
e k

a k

 

(14) 

 

From (13) and (14), it will be inferred that: 

     
 

 0

0

h
O k

a k k e k
a k


 

   
  

 
(15) 

 

It can also be written as: 

     
 

 11

11

h
O k

a k k e k
a k


 

   
  

 
(16) 

     
 

 12

12

h
O k

a k k e k
a k


 

   
  

 
(17) 

     
 

 0

0

h
O k

b k k e k
b k


 

   
  

 
(18) 

     
 

 11

11

h
O k

b k k e k
b k


 

   
  

 
(19) 

     
 

 12

12

h
O k

b k k e k
b k


 

   
  

 
(20) 

 
 

  0 11 12 0 11 12

O k
D k a a a b b b

k



     


 
(21) 

 

In this paper, candidate Lyapunov function is a 

function of error which is associated with GD 

based learning algorithms. This means when 

Lyapunov function converges to zero GD based 

learning algorithm is converged to zero too. 

Now a discrete Lyapunov function is considered 

as follows: 

   21

2
V k e k  

(22) 

 

Then, the variation of Lyapunov function on each 

iteration will be: 
 

     

    

         

      

2 2

1

1
1

2

1
1 1

2

1
2

2

   

  

    

   

V k V k V k

e k e k

e k e k e k e k

e k e k e k

 

(23) 

 

The variation of error can be approximated by: 
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 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

31 2

4

0 11 12

0 11 12

0

0

 



                                                                 

  
   
    

T T T T

T

e k e k e k e k
e k W k tr a k tr a k tr a k

W k a k a k a k

e k
tr b k

b k

 

 
 

 

 
 

5 6

11 12

11 12

  
                                



T T

e k e k
tr b k tr b k

b k b k

 

(24) 

where, the  .tr  is the trace of matrices. From (10) 

it will be concluded that: 

 

 
 

 

 

 

 
   

 

 

   
 

 

 

 

     
2







    
    

       

    
    
       

    
     

       

 

T T

T

o

T

o

o

W

e k e k
W k

W k O k

O k O k
k e k

W k W k

O k O k
k e k

W k W k

k e k D k

 

(25) 

 

From (15) and (21), 1 obtained as follows: 

 

 
 

 

 

 

 

   
 

 

   
 

 

 

 

   
 

 

 

 

 

1 0

0

0

0

0 0

0 0











  
   
    

    
    
        

 
  

   

     
      

         

     
      
         

 

T

T T

h

T

h

T

h

h

e k
tr a k

a k

e k O k
tr

O k a k

O k
k e k

a k

O k O k
tr k e k

a k a k

O k O k
k e k tr

a k a k

k    
0

2

a
F

e k D k

 

(26) 

 

 

Let .
F

 be Frobenius norm. Thus, using (16) to 

(20) and (21), the following equations are 

obtained: 
 

     
11

2

2   h

a
F

k e k D k  
(27) 

     
12

2

3   h

a
F

k e k D k  
(28) 

     
0

2

4   h

b
F

k e k D k  
(29) 

     
11

2

5   h

b
F

k e k D k  
(30) 

     
12

2

6

h

b
F

k e k D k    (31) 

 

So, it can be written as: 
 

       

       

   
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0 11

12 0

11 12

2

2 2

22

2 2





  

 

 

 

o

W

h

a a
FF

a b
F F

b b
F F

e k k e k D k

k e k D k D k

D k D k

D k D k

 

(32) 

 

From (23) and (32), it will be inferred that: 

        

                     

                       
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0 11 12 0 11 12
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0 11
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  
         

  
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  
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W a a a b b b

F F F FF F

o h
W a a a b b b

F F F FF F

o h
W a a

FF

V k e k e k e k

k e k D k k e k D k D k D k D k D k D k

e k k e k D k k e k D k D k D k D k D k D k

e k k D k k D k D k        

                 

12 0 11 12

0 11 12 0 11 12

22 2 2 2

2 22 2 2 22
2 0 

  
     

  

  
          

  

a b b b
F F FF

o h
W a a a b b b

F F F FF F

D k D k D k D k

k D k k D k D k D k D k D k D k

 

(33) 

 

Then: 
 

       

            0 11 12 0 11 12

2

2 22 2 2 2

0 0

2

     

     

o h

W

a a a b b b
F F F FFF

V k k D k k

D k D k D k D k D k D k

 

(34) 
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If we choose    o hk k  then: 
 

   
             

0 11 12 0 11 12

2 22 2 2 22

2
0    

     

o h

W a a a b b b
F F F FF F

k k

D k D k D k D k D k D k D k  
(35) 

 

From (35) we choose the learning rates as follows: 
 

 
 

2

2
0  o

W

k
D k  

(36) 

 
             

0 11 12 0 11 12

2 22 2 2 22

2
0

6

 
 

      
 

h

W a a a b b b
F F F FF F

k

D k D k D k D k D k D k D k  

(37) 

  

4. Simulation and results  

In this section, the proposed algorithm in sections 

3 is simulated on three nonlinear systems as 

examples 1, 2 and 3.  

In each example, there are 1000 random numbers 

which divide to training and test data sets. 

Dynamic neural network is used as identifier as 

illustrated in figure 2. 

Example 1: Identification of a nonlinear 

dynamical system. In this example, the nonlinear 

plant with multiple time-delays is described as 

[3]: 

       

   

1 , 1 , 2 ,

, 1

   



y k f y k y k y k

u k u k
 

(38) 

 

where, ( )u k  and ( )y k are the system input and 

output, respectively. 

Where: 

 
 1 2 3 5 3 4

1 2 3 4 5 2 3

2 3

1
, , , ,

1

 


 

x x x x x x
f x x x x x

x x
 

(39) 

 

For simulation of this nonlinear system, a neural 

network with the structure depicted in figure 2 is 

employed, where n is assumed to be 5, and p is 

taken as 15. In this neural network, it has been 

assumed that 2f  is a linear function, and 1f is a 

symmetric sigmoid function defined as below: 

 1 1

1










net

net

e
f net

e
 

(40) 

 

where, net  is the weighted sum of the inputs. For 

comparison, the mean square error (MSE) 

criterion has been used.  

In the simulation results, figure 4 indicates 

convergence with fulfillment of the stability 

conditions. 

Example 2: This system of equation is as follows 

[14]: 

 
 

 
 2

2
1

1
  



y k
y k u k

y k
 

(41) 

 
Figure 4. Learning rate is smaller than the upper limit 

bound. 

 

where, ( )u k  and ( )y k are the system input and 

output, respectively. 

For simulation of this nonlinear system, a neural 

network with the structure depicted in figure 2 is 

employed, where n  is assumed to be 2, and p is 

taken as 10.  

In the simulation results, figure 5 indicates 

convergence with fulfillment of the stability 

conditions. 

 
Figure 5. Learning rate is smaller than the upper limit 

bound.  
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Example 3: This system of equation is as follows 

[1-3]: 

        1 0.3 0.6 1y k y k y k f u k      (42) 

 

where,  ( )u k  and  ( )y k   are the system input and 

output, respectively. The unknown function (.)f  

is described as follows: 
 

       0.6sin 0.3sin 3 0.1sin 3    f u u u u  (43) 
 

For simulation of this nonlinear system, a neural 

network with the structure depicted in figure 2 is 

employed, where n  is assumed to be 3, and p  is 

taken as 15. In the simulation results, figure 6 

indicates convergence with fulfillment of the 

stability conditions.  

Figure 6. Learning rate is smaller than the upper limit 

bound. 
 

5. Conclusions 

In this paper, for permanent learning of modified 

dynamic neural network parameters online, 

Lyapunov stability theory is employed. In this 

learning algorithm, the associated parameters are 

trained according to descending gradient. Taking 

advantage of Lyapunov stability theory, some 

regions are defined, and through selection of the 

permanent training rate out of these regions, it can 

be guaranteed that the learning algorithm is stable 

throughout the identification process. The results 

of the obtained theory have been simulated for 

three examples. The simulation results suggest 

that in the training process, the system is stable 

and the convergence rate is desirable. This 

procedure can be employed in neural controllers. 
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 چکیده:

 متنهوعی تحقیقها  راسهتا ایه  در کهه باشد،می کنترل مهندسی در پراهمیت موارد  از یکی کنندهکنترل و شناساگر عصبی هایشبکه در پایداری بحث

 یهادگیری قهوانی  بها تطبیقهی نزولهی گرادیان الگوریتم مقاله ای  در. است بوده معمولی عصبی هایشبکه چوب چهار در عمدتاً که است پذیرفته صور 

 نهر  بهرای هاییمحهدوده پیشهنهادی روش توسط. است شده بررسی آموزشی الگوریتم پایداری و شده پیشنهاد پویا عصبی شبکه پارامترهای برای پایدار

 الگهوریتم پایهداری ،لیاپهانوف پایهداری قضیه. شودمی برده بکار پیشنهادی الگوریتم پایداری بررسی برای لیاپانوف پایداری قضیه. شوندمی تعریف آموزش

. شهودمهی بهرده بکهار پویا عصبی شبکه برای تطبیقی آموزش نر  و محاسبه بهنگام بصور  آموزش نر  ،پیشنهادی روش در. ندکمی تضمی  را آموزش

 .دهدمی نشان را نتایج صحت سازیشبیه نتایج

 .آموزش نر  لیاپانوف، پایداری قضیه شناساگر، ،نزولی گرادیان الگوریتم :کلمات کلیدی

 


