332 research outputs found

    Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints

    Get PDF
    We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming algorithms that use O?(k)?poly(1/?) memory, where k is the size constraint. At the end of the stream, both our algorithms post-process their data structures using any offline algorithm for submodular maximization, and obtain a solution whose approximation guarantee is ?/(1+?)-?, where ? is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to 1/2-? approximation (which is nearly optimal). If we post-process with the algorithm of [Niv Buchbinder and Moran Feldman, 2019], that achieves the state-of-the-art offline approximation guarantee of ? = 0.385, we obtain 0.2779-approximation in polynomial time, improving over the previously best polynomial-time approximation of 0.1715 due to [Feldman et al., 2018]. One of our algorithms is combinatorial and enjoys fast update and overall running times. Our other algorithm is based on the multilinear extension, enjoys an improved space complexity, and can be made deterministic in some settings of interest

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Adversarially Robust Submodular Maximization under Knapsack Constraints

    Full text link
    We propose the first adversarially robust algorithm for monotone submodular maximization under single and multiple knapsack constraints with scalable implementations in distributed and streaming settings. For a single knapsack constraint, our algorithm outputs a robust summary of almost optimal (up to polylogarithmic factors) size, from which a constant-factor approximation to the optimal solution can be constructed. For multiple knapsack constraints, our approximation is within a constant-factor of the best known non-robust solution. We evaluate the performance of our algorithms by comparison to natural robustifications of existing non-robust algorithms under two objectives: 1) dominating set for large social network graphs from Facebook and Twitter collected by the Stanford Network Analysis Project (SNAP), 2) movie recommendations on a dataset from MovieLens. Experimental results show that our algorithms give the best objective for a majority of the inputs and show strong performance even compared to offline algorithms that are given the set of removals in advance.Comment: To appear in KDD 201

    Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

    Full text link
    Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is governed by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint kk that runs in O(log(n))O(\log(n)) adaptive rounds and makes O(nlog(k))O(n \log(k)) oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.Comment: 12 pages, 8 figure
    corecore