32,643 research outputs found

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    The river sharing problem: A review of the technical literature for policy economists

    Get PDF
    Water is essential for life. However, the basic problem of water resource allocation has been that water tends to be over-allocated. Demand for water exceeds the available supply. Essentially, the water economy is bankrupt. Bankruptcy problems have been almost exhaustively studied in the literature on economic theory-primarily from the perspective of cooperative game theory. The main concern of this literature has been how to fairly divide up the assets of a bankrupt entity. In water resource economics cooperative game theory has often been employed as a means of analyzing water resource allocation. It was only recently that the problem of directional flow was incorporated into such analyses. This has come to be known as the “river sharing problem” in the theoretical literature. Accounting for the direction of flow in water resource allocation problems has profound implications for policies that wish to facilitate both fair and efficient water allocations. This is the case whether proposed policies are interventionist or market based in nature. There is now a considerable literature on the allocation and distribution of water resources characterized by unidirectional flow. In this paper I critically review and appraise this literature with a view to making it more accessible to applied and policy economists. A key feature of the paper is that the connection between the bankruptcy literature, which has recently also realized the importance of flow, and the river sharing literature is discussed. The current state of the art in game theoretic models of water resource allocation with directional flow is discussed and implications and consequences for water resource policy highlightedRiver sharing problem, Bankruptcy, Cooperative game theory, Water resouyrce allocation, distributive justice

    Endogenous Market Incompleteness Without Market Frictions: Dynamic Suboptimality of Competitive Equilibrium in Multiperiod Overlapping Generations Economies

    Get PDF
    In this paper, we show that within the set of stochastic three-period-lived OLG economies with productive assets (such as land), markets are necessarily sequentially incomplete, and agents in the model do not share risk optimally. We start by characterizing perfect risk sharing and find that it requires a state-dependent consumption claims which depend only on the exogenous shock realizations. We show then that the recursive competitive equilibrium of any overlapping generations economy with weakly more than three generations is not strongly stationary. This then allows us to show directly that there are short-run Pareto improvements possible in terms of risk-sharing and hence, that the recursive competitive equilibrium is not Pareto optimal. We then show that a financial reform which eliminates the equity asset and replaces it with zero net supply insurance contracts (Arrow securities) will implement to Pareto optimal stochastic steady-state known to exist in the model. Finally, we also show via numerical simulations that a system of government taxes and transfers can lead to a Pareto improvement over the competitive equilibrium in the model.

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game
    corecore