6,792 research outputs found

    Matrix Design for Optimal Sensing

    Full text link
    We design optimal 2×N2 \times N (2<N2 <N) matrices, with unit columns, so that the maximum condition number of all the submatrices comprising 3 columns is minimized. The problem has two applications. When estimating a 2-dimensional signal by using only three of NN observations at a given time, this minimizes the worst-case achievable estimation error. It also captures the problem of optimum sensor placement for monitoring a source located in a plane, when only a minimum number of required sensors are active at any given time. For arbitrary N≥3N\geq3, we derive the optimal matrices which minimize the maximum condition number of all the submatrices of three columns. Surprisingly, a uniform distribution of the columns is \emph{not} the optimal design for odd N≥7N\geq 7.Comment: conferenc

    Performance Limits and Geometric Properties of Array Localization

    Full text link
    Location-aware networks are of great importance and interest in both civil and military applications. This paper determines the localization accuracy of an agent, which is equipped with an antenna array and localizes itself using wireless measurements with anchor nodes, in a far-field environment. In view of the Cram\'er-Rao bound, we first derive the localization information for static scenarios and demonstrate that such information is a weighed sum of Fisher information matrices from each anchor-antenna measurement pair. Each matrix can be further decomposed into two parts: a distance part with intensity proportional to the squared baseband effective bandwidth of the transmitted signal and a direction part with intensity associated with the normalized anchor-antenna visual angle. Moreover, in dynamic scenarios, we show that the Doppler shift contributes additional direction information, with intensity determined by the agent velocity and the root mean squared time duration of the transmitted signal. In addition, two measures are proposed to evaluate the localization performance of wireless networks with different anchor-agent and array-antenna geometries, and both formulae and simulations are provided for typical anchor deployments and antenna arrays.Comment: to appear in IEEE Transactions on Information Theor

    Optimal sensor arrangements in Angle of Arrival (AoA) and range based localization with linear sensor arrays

    Get PDF
    This paper investigates the linear separation requirements for Angle-of-Arrival (AoA) and range sensors, in order to achieve the optimal performance in estimating the position of a target from multiple and typically noisy sensor measurements. We analyse the sensor-target geometry in terms of the Cramer&ndash;Rao inequality and the corresponding Fisher information matrix, in order to characterize localization performance with respect to the linear spatial distribution of sensors. Here in this paper, we consider both fixed and adjustable linear sensor arrays

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
    • …
    corecore