22,247 research outputs found

    Optimal self-assembly of finite shapes at temperature 1 in 3D

    Full text link
    Working in a three-dimensional variant of Winfree's abstract Tile Assembly Model, we show that, for an arbitrary finite, connected shape XZ2X \subset \mathbb{Z}^2, there is a tile set that uniquely self-assembles into a 3D representation of a scaled-up version of XX at temperature 1 in 3D with optimal program-size complexity (the "program-size complexity", also known as "tile complexity", of a shape is the minimum number of tile types required to uniquely self-assemble it). Moreover, our construction is "just barely" 3D in the sense that it only places tiles in the z=0z = 0 and z=1z = 1 planes. Our result is essentially a just-barely 3D temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik and Winfree (SICOMP 2007)

    Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic Assembly in 2D

    Get PDF
    We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape. In contrast, we show that temperature 1 self-assembly in 3 dimensions, even when growth is restricted to at most 1 step into the third dimension, is capable of simulating a large class of temperature 2 systems, in turn permitting the simulation of arbitrary Turing machines and the assembly of n×nn\times n squares in near optimal O(logn)O(\log n) tile complexity. Further, we consider temperature 1 probabilistic assembly in 2D, and show that with a logarithmic scale up of tile complexity and shape scale, the same general class of temperature τ=2\tau=2 systems can be simulated with high probability, yielding Turing machine simulation and O(log2n)O(\log^2 n) assembly of n×nn\times n squares with high probability. Our results show a sharp contrast in achievable tile complexity at temperature 1 if either growth into the third dimension or a small probability of error are permitted. Motivated by applications in nanotechnology and molecular computing, and the plausibility of implementing 3 dimensional self-assembly systems, our techniques may provide the needed power of temperature 2 systems, while at the same time avoiding the experimental challenges faced by those systems

    Dimensionality and design of isotropic interactions that stabilize honeycomb, square, simple cubic, and diamond lattices

    Get PDF
    We use inverse methods of statistical mechanics and computer simulations to investigate whether an isotropic interaction designed to stabilize a given two-dimensional (2D) lattice will also favor an analogous three-dimensional (3D) structure, and vice versa. Specifically, we determine the 3D ordered lattices favored by isotropic potentials optimized to exhibit stable 2D honeycomb (or square) periodic structures, as well as the 2D ordered structures favored by isotropic interactions designed to stabilize 3D diamond (or simple cubic) lattices. We find a remarkable `transferability' of isotropic potentials designed to stabilize analogous morphologies in 2D and 3D, irrespective of the exact interaction form, and we discuss the basis of this cross-dimensional behavior. Our results suggest that the discovery of interactions that drive assembly into certain 3D periodic structures of interest can be assisted by less computationally intensive optimizations targeting the analogous 2D lattices.Comment: 22 pages (preprint version; includes supplementary information), 5 figures, 3 table

    Stable Frank-Kasper phases of self-assembled, soft matter spheres

    Full text link
    Single molecular species can self-assemble into Frank Kasper (FK) phases, finite approximants of dodecagonal quasicrystals, defying intuitive notions that thermodynamic ground states are maximally symmetric. FK phases are speculated to emerge as the minimal-distortional packings of space-filling spherical domains, but a precise quantitation of this distortion and how it affects assembly thermodynamics remains ambiguous. We use two complementary approaches to demonstrate that the principles driving FK lattice formation in diblock copolymers emerge directly from the strong-stretching theory of spherical domains, in which minimal inter-block area competes with minimal stretching of space-filling chains. The relative stability of FK lattices is studied first using a diblock foam model with unconstrained particle volumes and shapes, which correctly predicts not only the equilibrium {\sigma} lattice, but also the unequal volumes of the equilibrium domains. We then provide a molecular interpretation for these results via self-consistent field theory, illuminating how molecular stiffness regulates the coupling between intra-domain chain configurations and the asymmetry of local packing. These findings shed new light on the role of volume exchange on the formation of distinct FK phases in copolymers, and suggest a paradigm for formation of FK phases in soft matter systems in which unequal domain volumes are selected by the thermodynamic competition between distinct measures of shape asymmetry.Comment: 40 pages, 22 figure
    corecore