41,458 research outputs found

    Resource Allocation with Reverse Pricing for Communication Networks

    Full text link
    Reverse pricing has been recognized as an effective tool to handle demand uncertainty in the travel industry (e.g., airlines and hotels). To investigate its viability for communication networks, we study the practical limitations of (operator-driven) time-dependent pricing that has been recently introduced, taking into account demand uncertainty. Compared to (operator-driven) time-dependent pricing, we show that the proposed pricing scheme can achieve "triple-win" solutions: an increase in the total average revenue of the operator; higher average resource utilization efficiency; and an increment in the total average payoff of the users. Our findings provide a new outlook on resource allocation, and design guidelines for adopting the reverse pricing scheme.Comment: to appear in IEEE International Conference on Communications (ICC) 2016, Kuala Lumpur, Malaysia (6 pages, 3 figures

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Stabilization of structure-preserving power networks with market dynamics

    Get PDF
    This paper studies the problem of maximizing the social welfare while stabilizing both the physical power network as well as the market dynamics. For the physical power grid a third-order structure-preserving model is considered involving both frequency and voltage dynamics. By applying the primal-dual gradient method to the social welfare problem, a distributed dynamic pricing algorithm in port-Hamiltonian form is obtained. After interconnection with the physical system a closed-loop port-Hamiltonian system of differential-algebraic equations is obtained, whose properties are exploited to prove local asymptotic stability of the optimal points.Comment: IFAC World Congress 2017, accepted, 6 page
    corecore