172 research outputs found

    Exact Regeneration Codes for Distributed Storage Repair Using Interference Alignment

    Full text link
    The high repair cost of (n,k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. On one end of this spectrum of Regenerating Codes are Minimum Storage Regenerating (MSR) codes that can match the minimum storage cost of MDS codes while also significantly reducing repair bandwidth. In this paper, we describe Exact-MSR codes which allow for any failed nodes (whether they are systematic or parity nodes) to be regenerated exactly rather than only functionally or information-equivalently. We show that Exact-MSR codes come with no loss of optimality with respect to random-network-coding based MSR codes (matching the cutset-based lower bound on repair bandwidth) for the cases of: (a) k/n <= 1/2; and (b) k <= 3. Our constructive approach is based on interference alignment techniques, and, unlike the previous class of random-network-coding based approaches, we provide explicit and deterministic coding schemes that require a finite-field size of at most 2(n-k).Comment: to be submitted to IEEE Transactions on Information Theor

    Access vs. Bandwidth in Codes for Storage

    Get PDF
    Maximum distance separable (MDS) codes are widely used in storage systems to protect against disk (node) failures. A node is said to have capacity ll over some field F\mathbb{F}, if it can store that amount of symbols of the field. An (n,k,l)(n,k,l) MDS code uses nn nodes of capacity ll to store kk information nodes. The MDS property guarantees the resiliency to any nkn-k node failures. An \emph{optimal bandwidth} (resp. \emph{optimal access}) MDS code communicates (resp. accesses) the minimum amount of data during the repair process of a single failed node. It was shown that this amount equals a fraction of 1/(nk)1/(n-k) of data stored in each node. In previous optimal bandwidth constructions, ll scaled polynomially with kk in codes with asymptotic rate <1<1. Moreover, in constructions with a constant number of parities, i.e. rate approaches 1, ll is scaled exponentially w.r.t. kk. In this paper, we focus on the later case of constant number of parities nk=rn-k=r, and ask the following question: Given the capacity of a node ll what is the largest number of information disks kk in an optimal bandwidth (resp. access) (k+r,k,l)(k+r,k,l) MDS code. We give an upper bound for the general case, and two tight bounds in the special cases of two important families of codes. Moreover, the bounds show that in some cases optimal-bandwidth code has larger kk than optimal-access code, and therefore these two measures are not equivalent.Comment: This paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2012). submitted to IEEE transactions on information theor

    Explicit MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures for a given number of redundancy or parity symbols. If an MDS code has rr parities and no more than rr erasures occur, then by transmitting all the remaining data in the code, the original information can be recovered. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column over some field, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we address the following question: given the length of the column ll, number of parities rr, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r+1)logrl(r+1)\log_r l.Comment: 17 page

    A Framework of Constructions of Minimal Storage Regenerating Codes with the Optimal Access/Update Property

    Full text link
    In this paper, we present a generic framework for constructing systematic minimum storage regenerating codes with two parity nodes based on the invariant subspace technique. Codes constructed in our framework not only contain some best known codes as special cases, but also include some new codes with key properties such as the optimal access property and the optimal update property. In particular, for a given storage capacity of an individual node, one of the new codes has the largest number of systematic nodes and two of the new codes have the largest number of systematic nodes with the optimal update property.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Long MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures given the number of redundancy or parity symbols. If an MDS code has r parities and no more than r erasures occur, then by transmitting all the remaining data in the code one can recover the original information. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we ask the following question: given the length of the column l, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r + 1)log_r l

    On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage

    Full text link
    The high repair cost of (n,k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. In this paper, we address bandwidth-optimal (n,k,d) Exact-Repair MDS codes, which allow for any failed node to be repaired exactly with access to arbitrary d survivor nodes, where k<=d<=n-1. We show the existence of Exact-Repair MDS codes that achieve minimum repair bandwidth (matching the cutset lower bound) for arbitrary admissible (n,k,d), i.e., k<n and k<=d<=n-1. Our approach is based on interference alignment techniques and uses vector linear codes which allow to split symbols into arbitrarily small subsymbols.Comment: 20 pages, 6 figure

    Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions

    Full text link
    Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary k of n nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary d nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n-1 >= 2k-1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact-repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k-3 in the absence of symbol extension, and (d) the construction, also explicit, of MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the non-existence proof for d < 2k-3. To the best of our knowledge, the constructions presented in this paper are the first, explicit constructions of regenerating codes that achieve the cut-set bound.Comment: 38 pages, 12 figures, submitted to the IEEE Transactions on Information Theory;v3 - The title has been modified to better reflect the contributions of the submission. The paper is extensively revised with several carefully constructed figures and example
    corecore