33 research outputs found

    Optimal Rates for Multi-pass Stochastic Gradient Methods

    Get PDF
    We analyze the learning properties of the stochastic gradient method when multiple passes over the data and mini-batches are allowed. We study how regularization properties are controlled by the step-size, the number of passes and the mini-batch size. In particular, we consider the square loss and show that for a universal step-size choice, the number of passes acts as a regularization parameter, and optimal nite sample bounds can be achieved by early-stopping. Moreover, we show that larger step-sizes are allowed when considering mini-batches. Our analysis is based on a unifying approach, encompassing both batch and stochastic gradient methods as special cases. As a byproduct, we derive optimal convergence results for batch gradient methods (even in the non-attainable cases)

    Generalization Properties of Doubly Stochastic Learning Algorithms

    Full text link
    Doubly stochastic learning algorithms are scalable kernel methods that perform very well in practice. However, their generalization properties are not well understood and their analysis is challenging since the corresponding learning sequence may not be in the hypothesis space induced by the kernel. In this paper, we provide an in-depth theoretical analysis for different variants of doubly stochastic learning algorithms within the setting of nonparametric regression in a reproducing kernel Hilbert space and considering the square loss. Particularly, we derive convergence results on the generalization error for the studied algorithms either with or without an explicit penalty term. To the best of our knowledge, the derived results for the unregularized variants are the first of this kind, while the results for the regularized variants improve those in the literature. The novelties in our proof are a sample error bound that requires controlling the trace norm of a cumulative operator, and a refined analysis of bounding initial error.Comment: 24 pages. To appear in Journal of Complexit

    Learning with SGD and Random Features

    Get PDF
    Sketching and stochastic gradient methods are arguably the most common techniques to derive efficient large scale learning algorithms. In this paper, we investigate their application in the context of nonparametric statistical learning. More precisely, we study the estimator defined by stochastic gradient with mini batches and random features. The latter can be seen as form of nonlinear sketching and used to define approximate kernel methods. The considered estimator is not explicitly penalized/constrained and regularization is implicit. Indeed, our study highlights how different parameters, such as number of features, iterations, step-size and mini-batch size control the learning properties of the solutions. We do this by deriving optimal finite sample bounds, under standard assumptions. The obtained results are corroborated and illustrated by numerical experiments

    On the Regularizing Property of Stochastic Gradient Descent

    Get PDF
    Stochastic gradient descent is one of the most successful approaches for solving large-scale problems, especially in machine learning and statistics. At each iteration, it employs an unbiased estimator of the full gradient computed from one single randomly selected data point. Hence, it scales well with problem size and is very attractive for truly massive dataset, and holds significant potentials for solving large-scale inverse problems. In the recent literature of machine learning, it was empirically observed that when equipped with early stopping, it has regularizing property. In this work, we rigorously establish its regularizing property (under \textit{a priori} early stopping rule), and also prove convergence rates under the canonical sourcewise condition, for minimizing the quadratic functional for linear inverse problems. This is achieved by combining tools from classical regularization theory and stochastic analysis. Further, we analyze the preasymptotic weak and strong convergence behavior of the algorithm. The theoretical findings shed insights into the performance of the algorithm, and are complemented with illustrative numerical experiments.Comment: 22 pages, better presentatio

    Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces

    Get PDF
    In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral-regularized algorithms, including ridge regression, principal component analysis, and gradient methods. We prove optimal, high-probability convergence results in terms of variants of norms for the studied algorithms, considering a capacity assumption on the hypothesis space and a general source condition on the target function. Consequently, we obtain almost sure convergence results with optimal rates. Our results improve and generalize previous results, filling a theoretical gap for the non-attainable cases

    Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes

    Get PDF
    We consider stochastic gradient descent (SGD) for least-squares regression with potentially several passes over the data. While several passes have been widely reported to perform practically better in terms of predictive performance on unseen data, the existing theoretical analysis of SGD suggests that a single pass is statistically optimal. While this is true for low-dimensional easy problems, we show that for hard problems, multiple passes lead to statistically optimal predictions while single pass does not; we also show that in these hard models, the optimal number of passes over the data increases with sample size. In order to define the notion of hardness and show that our predictive performances are optimal, we consider potentially infinite-dimensional models and notions typically associated to kernel methods, namely, the decay of eigenvalues of the covariance matrix of the features and the complexity of the optimal predictor as measured through the covariance matrix. We illustrate our results on synthetic experiments with non-linear kernel methods and on a classical benchmark with a linear model

    Kernel Conjugate Gradient Methods with Random Projections

    Full text link
    We propose and study kernel conjugate gradient methods (KCGM) with random projections for least-squares regression over a separable Hilbert space. Considering two types of random projections generated by randomized sketches and Nystr\"{o}m subsampling, we prove optimal statistical results with respect to variants of norms for the algorithms under a suitable stopping rule. Particularly, our results show that if the projection dimension is proportional to the effective dimension of the problem, KCGM with randomized sketches can generalize optimally, while achieving a computational advantage. As a corollary, we derive optimal rates for classic KCGM in the case that the target function may not be in the hypothesis space, filling a theoretical gap.Comment: 43 pages, 2 figure
    corecore