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Abstract

Stochastic gradient descent (SGD) and its variants are among the most successful approaches for
solving large-scale optimization problems. At each iteration, SGD employs an unbiased estimator of
the full gradient computed from one single randomly selected data point. Hence, it scales well with
problem size and is very attractive for handling truly massive dataset, and holds significant poten-
tials for solving large-scale inverse problems. In this work, we rigorously establish its regularizing
property under a priori early stopping rule for linear inverse problems, and also prove convergence
rates under the canonical sourcewise condition. This is achieved by combining tools from classical
regularization theory and stochastic analysis. Further, we analyze its preasymptotic weak and strong
convergence behavior, in order to explain the fast initial convergence typically observed in practice.
The theoretical findings shed insights into the performance of the algorithm, and are complemented
with illustrative numerical experiments.
Keywords: stochastic gradient descent; regularizing property; error estimates; preasymptotic con-
vergence.

1 Introduction

In this paper, we consider the following finite-dimensional linear inverse problem:

Ax = y†, (1.1)

where A ∈ Rn×m is a matrix representing the data formation mechanism, x ∈ Rm is the unknown signal
of interest, and y† ∈ Rn is the exact data formed by y† = Ax†, with x† being the true solution. Note
that in practice, the matrix A is not necessarily of full rank, and equation (1.1) may have a multitude of
solutions. The exact solution x† will be identified with the unique minimum norm solution; see (2.1) for
the definition. In practice, we can only access the noisy data yδ ∈ Rn defined by

yδ = y† + ξ,

where the vector ξ ∈ Rn is the noise in the data, with a noise level δ = ‖ξ‖ (and δ̄ = n−
1
2 δ). The noise

ξ is assumed to be a realization of an independent identically distributed (i.i.d.) mean zero Gaussian
random vector. Throughout, we denote the ith row of the matrix A by a column vector ai ∈ Rm,
and the ith entry of the vector yδ by yδi . The model (1.1) is representative of many discrete linear
inverse problems, including linearized (sub)problems of nonlinear inverse problems. Hence, the stable
and efficient numerical solution of the model (1.1) has been the topic of many research works, and plays
an important role in developing practical inversion techniques (see, e.g., [8, 9]).

Stochastic gradient descent (SGD), dated at least back to Robbins and Monro [23], represents an
extremely popular solver for large-scale least square type problems and statistical inference, and its
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accelerated variants represent state-of-the-art solvers for training (deep) neural networks [4, 14, 5]. Such
methods hold significant potentials for solving large-scale inverse problems. For example, the randomized
Kaczmarz method (RKM) [25], which has been very popular and successful in computed tomography [18],
can be viewed as SGD with weighted sampling (see, e.g., [19] and [12, Prop. 4.1]). See [11, 6] for several
experimental evaluations on SGD for inverse problems. Hence, it is important to understand theoretical
properties of such stochastic reconstruction methods, which, to the best of our knowledge, have not been
addressed in the context of ill-posed inverse problems.

In this work, we contribute to the theoretical analysis of SGD for inverse problems. The starting
point is the following optimization problem:

F (x) =
1

2n
‖Ax− yδ‖2 =

1

n

n∑
n=1

fi(x), with fi(x) =
((ai, x)− yδi )2

2
,

where (·, ·) denotes the Euclidean inner product on Rm. For a rank-deficient A, the functional F is not
strictly convex, and does not have a unique minimizer. The basic version of SGD reads: given an initial
guess x1 ∈ Rm, update the iterate xδk+1 by

xδk+1 = xδk − ηk((aik , x
δ
k)− yδik)aik , k = 1, . . . (1.2)

where the index ik is drawn i.i.d. uniformly from the set {1, . . . , n}, ηk > 0 is the step size at the kth
iteration, and . The update (1.2) can be derived by computing a gradient estimate ∂fi(x) = ((aik , x) −
yδik)aik from the functional fi(x) for a randomly sampled single datum {aik , yδik}, instead of the full
gradient ∂F (x). Thus, the SGD iteration (1.2) is a randomized version of the Landweber iteration:

xδk+1 = xδk − ηk∂F (xk). (1.3)

Compared with Landweber iteration (1.3), SGD requires only evaluating one datum {aik , yδik} per
iteration, and thus the per-iteration cost is drastically reduced, which is especially attractive for large-
scale problems. In theory, Landweber method is known to be regularizing [8, Chapter 6]. However, the
regularizing property of SGD remains to be established, even though it was conjectured and empirically
examined (see, e.g., [24, 10, 28]). Numerically, one observes a semiconvergence phenomenon for SGD:
the iterate xδk first converges to the true solution x†, and then diverges as the iteration further proceeds.
Semiconvergence is characteristic of (deterministic) iterative regularization methods, and early stopping
is often employed [8, 15]. Below we describe the main theoretical contributions of this work, which are
complemented with numerical experiments in Section 6.

The first contribution is to analyze SGD with a polynomially decaying sequence of step sizes (see
Assumption 2.1) through the lens of regularization theory. In Theorems 2.1 and 2.2, we prove that SGD
is regularizing in the sense that iterate xδk converges to the exact solution x† in the mean squared norm
as the noise level δ tends to zero, under a priori early stopping rule, and also xδk converges to x† at
certain rates under canonical source condition. To the best of our knowledge, this is the first result on
regularizing property of a stochastic iteration method. The analysis relies on decomposing the error into
three components: approximation error due to early stopping, propagation error due to the presence of
data noise, and stochastic error due to the random index ik. The first two parts are deterministic and
can be analyzed in a manner similar to Landweber method [8, Chapter 6]; see Theorem 3.1 and 3.2.
The last part on the variance of the iterate constitutes the main technical challenge in the analysis. It is
overcome by relating the iterate variance to the expected square residuals and analyzing the evolution of
the latter; see Theorems 3.3 and 3.4.

The second contribution is to analyze the preasymptotic convergence in both weak and strong sense.
In practice, it is often observed that SGD can decrease the error very fast during initial iterations. We
provide one explanation of the phenomenon by means of preasymptotic convergence, which extends the
recent work on RKM [12]. It is achieved by dividing the error into low- and high-frequency components
according to right singular vectors, and studying their dynamics separately. In Theorems 2.3 and 2.4,
we prove that the low-frequency error can decay much faster than the high-frequency one in either weak
or strong norm. In particular, if the initial error is dominated by the low-frequency components, then
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SGD decreases the total error very effectively during the first iterations. The analysis sheds insights into
practical performance of SGD. Further, under a source type condition, the low-frequency error is indeed
dominating, cf. Proposition 5.1.

Now we situate this work in existing literature in two related areas: inverse problems with random
noise, and machine learning. Inverse problems with random noise have attracted much attention over
the last decade. Hohage and his collaborators [1, 2, 3] studied various regularization methods, e.g.,
Tikhonov and iterative regularization, for solving linear and nonlinear inverse problems with random
noise. For example, Bissantz et al [2] analyzed Tikhonov regularization for nonlinear inverse problems,
and analyzed consistency and convergence rates. In these works, randomness enters into the problem
formulation via the data yδ directly as a Hilbert space valued process, which is fixed (though random)
when applying regularization techniques. Thus, it differs greatly from SGD, for which randomness arises
due to the random row index ik and changes at each iteration. Handling the iteration noise requires
different techniques than that in these works.

There are also a few relevant works in machine learning [27, 26, 17, 7]. Ying and Pontil [27] studied an
online least-squares gradient descent algorithm in a reproducing kernel Hilbert space (RKHS), and derived
bounds on the generalization error. Tarres and Yao [26] analyzed the convergence of a (regularized) online
learning algorithm closely related to SGD. Lin and Rosasco [17] analyzed the influence of batch size on the
convergence of mini-batch SGD. See also the recent work [7] on SGD with averaging for nonparametric
regression in RKHS. All these works analyze the method in the framework of statistical learning, where
the noise arises mainly due to finite sampling of the (unknown) underlying data distribution, whereas
for inverse problems, the noise arises from imperfect data acquisition process and enters into the data
yδ directly. Further, the main focus of these works is to bound the generalization error, instead of
error estimates for the iterate. Nonetheless, our proof strategy in decomposing the total error into three
different components shares similarity with these works.

The rest of the paper is organized as follows. In Section 2, we present and discuss the main results, i.e.,
regularizing property and preasymptotic convergence. In Section 3, we derive bounds on three parts of the
total error. Then in Section 4, we analyze the regularizing property of SGD with a priori stopping rule,
and prove convergence rates under classical source condition. In Section 5, we discuss the preasymptotic
convergence of SGD. Some numerical results are given in Section 6. In an appendix, we collect some
useful inequalities. We conclude this section with some notation. We use the superscript δ in xδk to
indicate SGD iterates for noisy data yδ, and denote by xk that for the exact data y†. The notation ‖ · ‖
denotes Euclidean norm for vectors and spectral norm for matrices, and [·] denotes the integral part of a
real number. {Fk}k≥1 denotes a sequence of increasing σ-fields generated by the random index ik up to
the kth iteration. The notation c, with or without subscript, denotes a generic constant that is always
independent of the iteration index k and the noise level δ.

2 Main results and discussions

Now we present the main results of the work, i.e., regularizing property of SGD and preasymptotic
convergence results. The detailed proofs are deferred to Sections 4 and 5, which in turn rely on tech-
nical estimates derived in Section 3. Throughout, we consider the following step size schedule, which is
commonly employed for SGD.

Assumption 2.1. The step size ηj = c0j
−α, j = 1, 2, . . . , α ∈ (0, 1), with c0 maxi ‖ai‖2 ≤ 1.

Due to stochasticity of the row index ik, the iterate xδk is random. We measure the approximation
error xδk−x† to the true solution x† by the mean squared error E[‖xδk−x†‖2], where the expectation E[·]
is with respect to the random index ik. The reference solution x† is taken to be the unique minimum
norm solution (relative to the initial guess x1):

x† = arg min
x∈Rm

{
‖x− x1‖ s.t. Ax† = y†

}
. (2.1)

Now we can state the regularizing property of SGD (1.2) under a priori stopping rule: the error
E[‖xδk(δ) − x

†‖2] tends to zero as the noise level δ → 0, if the stopping index k(δ) is chosen properly in
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relation to the noise level δ. Thus, SGD equipped with suitable a priori stopping rule is a regularization
method. Note that condition (2.2) is analogous to that for classical regularization methods.

Theorem 2.1. Let Assumption 2.1 be fulfilled. If the stopping index k(δ) satisfies

lim
δ→0+

k(δ) =∞ and lim
δ→0+

k(δ)
α−1
2 δ = 0, (2.2)

then the iterate xδk(δ) satisfies

lim
δ→0+

E[‖xδk(δ) − x
†‖2] = 0.

To derive convergence rates, we employ the source condition in classical regularization theory [8, 9].
Recall that the canonical source condition reads: there exists some w ∈ Rm such that

x† − x1 = Bpw, p ≥ 0, (2.3)

where the symmetric and positive semidefinite B ∈ Rm×m is defined in (3.4) below, and Bp denotes the
usual fractional power (via spectral decomposition). Condition (2.3) represents a type of smoothness of
the initial error x†−x1, and the exponent p determines the degree of smoothness: the larger the exponent
p is, the smoother the initial error x† − x1 becomes. It controls the approximation error due to early
stopping (see Theorem 3.1 below for the precise statement). The source type condition is one of the most
classical approaches to derive convergence rates in classical regularization theory [8, 9].

Next we can state convergence rates under a priori stopping index.

Theorem 2.2. Let Assumption 2.1 and the source condition (2.3) be fulfilled. Then there holds

E[‖xδk+1 − x†‖2] ≤ ck−min(2α,min(1,2p)(1−α)) ln2 k + c′k1−αδ̄2 + c′′δ2,

where the constants c, c′ and c′′ depend on α, p, ‖w‖, ‖Ax1 − yδ‖ and ‖A‖.

Remark 2.1. Theorem 2.2 indicates a semiconvergence for the iterate xδk: the first term is decreasing in
k and dependent of regularity index p and the step size parameter α ∈ (0, 1), and the second term k1−αδ̄2

is increasing in k and dependent of the noise level. The first term k−min(2α,min(1,2p)(1−α)) ln2 k contains
both approximation error (indicated by p) and stochastic error. By properly balancing the first two terms
in the estimate, one can obtain a convergence rate. The best possible convergence rate depends on both the
decay rate α and the regularity index p in (2.3), and it is suboptimal for any p > 1

2 when compared with
Landweber method. That is, the vanilla SGD suffers from saturation, due to the stochasticity induced by
the random row index ik. The saturation is also observed in the context of statistical learning theory [27].

In practice, it is often observed that SGD decreases the error rapidly during the initial iterations. This
phenomenon cannot be explained by the regularizing property. Instead, we analyze the preasymptotic
convergence by means of SVD, in order to explain the fast initial convergence. Let n−

1
2A = UΣV t, where

U ∈ Rn×n, V = [v1 v2 · · · vm] ∈ Rm×m are orthonormal, and Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rn×m is
diagonal with the diagonals ordered nonincreasingly and r the rank of A. For any fixed truncation level
1 ≤ L ≤ r, we define the low- and high-frequency solution spaces L and H respectively by

L = span({vi}Li=1) and H = span({v}min(n,m)
i=L+1 ).

Let PL and PH be the orthogonal projection onto L and H, respectively. The analysis relies on decom-
posing the error eδk = xδk−x† into the low- and high-frequency components PLe

δ
k and PHe

δ
k, respectively,

in order to capture their essentially different dynamics.
We have the following preasymptotic weak and strong convergence results, which characterize the

one-step evolution of the low- and high-frequency errors. The proofs are given in Section 5.

Theorem 2.3. If ηk ≤ c0 with c0 maxi ‖ai‖2 ≤ 1, then there hold

‖E[PLe
δ
k+1]‖ ≤ (1− ηkσ2

L)‖E[PLe
δ
k]‖+ c

− 1
2

0 ηk δ̄,

‖E[PHe
δ
k+1]‖ ≤ ‖E[PHe

δ
k]‖+ ηkσL+1δ̄.
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Theorem 2.4. If ηk ≤ c0 with c0 maxi ‖ai‖2 ≤ 1, then with c1 = σ2
L, and c2 =

∑r
i=L+1 σ

2
i , there hold

E[‖PLeδk+1‖2|Fk−1] ≤ (1− c1ηk)‖PLeδk‖2 + c2c
−1
0 η2k‖PHeδk‖2 + c−10 ηk δ̄(ηk δ̄ + 2

√
2σ1‖eδk‖),

E[‖PHeδk+1‖2|Fk−1] ≤ c2c−10 η2k‖PLeδk‖2 + (1 + c2c
−1
0 η2k)‖PHeδk‖2 + c−10 η2k δ̄

2

+ 2
√

2c
1
2
2 ηk δ̄

(
‖PHeδk‖2 + c−20 η2k‖eδk‖2

) 1
2

.

Remark 2.2. It is noteworthy that in Theorems 2.3 and 2.4, the step size ηk is not required to be
polynomially decaying. Theorems 2.3 and 2.4 indicate that the low-frequency error can decrease much
faster than the high-frequency error in either the weak or mean squared norm sense. Thus, if the initial
error e1 consists mostly of low-frequency modes, SGD can decrease the low-frequency error and thus also
the total error rapidly, resulting in fast initial convergence.

3 Preliminary estimates

In this part, we provide several technical estimates for the SGD iteration (1.2). By bias-variance decom-
position and triangle inequality, we have

E[‖xδk − x†‖2] = ‖E[xδk]− x†‖2 + E[‖E[xδk]− xδk‖2]

≤ 2‖E[xk]− x†‖2 + 2‖E[xk − xδk]‖2 + E[‖E[xδk]− xδk‖2], (3.1)

where xk is the random iterate for exact data y†. Thus, the total error is decomposed into three com-
ponents: approximation error due to early stopping, propagation error due to noise and stochastic error
due to the random index ik. The objective below is to derive bounds on the three terms in (3.1), which
are crucial for proving Theorems 2.1 and 2.2 in Section 4. The approximation and propagation errors
are given in Theorems 3.1 and 3.2, respectively. The stochastic error is analyzed in Section 3.2: first in
terms of the expected squared residuals in Theorem 3.3, and then bound on the latter in Theorem 3.4.
The analysis of the stochastic error represents the main technical challenge.

3.1 Approximation and propagation errors

For the analysis, we first introduce auxiliary iterations. Let eδk = xδk − x† and ek = xk − x† be the errors
for SGD iterates xδk and xk, for yδ and y†, respectively. They satisfy the following recursion:

ek+1 = ek − ηk((aik , xk)− y†ik)aik = ek − ηk(aik , ek)aik , (3.2)

eδk+1 = eδk − ηk((aik , x
δ
k)− yδik)aik = eδk − ηk(aik , e

δ
k)aik + ηkξikaik . (3.3)

Then we introduce two auxiliary matrices: for any vector b ∈ Rn,

B := E[aia
t
i] and Ātb := E[aibi]. (3.4)

Under i.i.d. uniform sampling of the index ik, B = n−1AtA and Āt = n−1At. Below, let

Πk
j (B) =

k∏
i=j

(I − ηiB), j ≤ k, (3.5)

with the convention Πk
k+1(B) = I,

Now we bound the weighted norm ‖BsE[ek]‖ of the approximation error E[ek]. The cases s = 0 and
s = 1/2 will be used for bounding the approximation error and the residual, respectively.

Theorem 3.1. Let Assumption 2.1 be fulfilled. Under the source condition (2.3) and for any s ≥ 0, with

cp,s = ( (p+s)(1−α)
c0e(21−α−1) )

p+s‖w‖, there holds

‖BsE[ek+1]‖ ≤ cp,sk−(p+s)(1−α).
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Proof. It follows from (3.2) and the identity y†i = (ai, x
†) that the error ek satisfies

E[ek+1|Fk−1] = (I − ηkE[aia
t
i])ek = (I − ηkB)ek.

Taking the full expectation yields
E[ek+1] = (I − ηkB)E[ek]. (3.6)

Repeatedly applying the recursion (3.6) and noting that e1 is deterministic give

E[ek+1] =

k∏
i=1

(I − ηiB)E[e1] =

k∏
i=1

(I − ηiB)e1.

From the source condition (2.3), we deduce

‖BsE[ek+1]‖ ≤ ‖Πk
1(B)Bp+s‖‖w‖.

By Lemmas A.1 and A.2, we arrive at

‖E[ek+1]‖ ≤ (p+ s)p+s

ep+s(
∑k
i=1 ηi)

p+s
‖w‖ ≤ cp,sk−(p+s)(1−α),

with a constant cp,s = ( (p+s)(1−α)
c0e(21−α−1) )

p+s‖w‖. This completes the proof of the theorem.

Remark 3.1. The constant cp,s is uniformly bounded in α ∈ [0, 1]: limα→1−
1−α

21−α−1 = 1
ln 2 .

Next we bound the weighted norm of the propagation error E[xδk − xk] due to data noise ξ.

Theorem 3.2. Let Assumption 2.1 be fulfilled, s ∈ [− 1
2 ,

1
2 ], and r = 1

2 + s. Then there holds

‖BsE[xk+1 − xδk+1]‖ ≤ cr,αδ̄
{
k(1−r)(1−α), 0 ≤ r < 1,
max(1, ln k), r = 1,

with cr,α given by

cr,α = c1−r0

{
rr

erB(1− α, 1− r) + 1, r < 1,
rr

er 2α 2−α
1−α + 1, r = 1.

Proof. By the recursions (3.2) and (3.3), the propagation error νk = E[xδk − xk] satisfies ν1 = 0 and
νk+1 = (I − ηkB)νk + ηkĀ

tξ, with ξ = yδ − y†. Applying the recursion repeatedly yields

νk+1 =

k∑
j=1

ηjΠ
k
j+1(B)Ātξ.

Thus, by the triangle inequality, we have

‖Bsνk+1‖ ≤
k∑
j=1

ηj‖BsΠk
j+1(B)Āt‖‖ξ‖.

Since ‖BsΠk
j+1(B)Āt‖ = n−

1
2 ‖Πk

j+1(B)Bs+
1
2 ‖, by Lemma A.1,

‖Bsνk+1‖ ≤
rr

er

k−1∑
j=1

ηj

(
∑k
i=j+1 ηi)

r
δ̄ + ηk‖BsĀt‖‖ξ‖

=
(rr
er

k−1∑
j=1

ηj

(
∑k
i=j+1 ηi)

r
+ k−αc0‖B‖r

)
δ̄.

Under Assumption 2.1, we have c0‖B‖r ≤ c1−r0 . This and Lemma A.2 complete the proof.
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Remark 3.2. The iterate means E[xk] and E[xδk] satisfy the recursion for Landweber method (LM).
Hence, the proof and error bounds resemble closely that for LM [8, Chapter 6]. Taking s = 0 in Theorems
3.1 and 3.2 yields

‖E[xδk+1]− x†‖ ≤ cpk−p(1−α) + cαk
1−α
2 δ̄.

By balancing the two terms, one can derive a convergence rate in terms of δ̄ (instead of δ), and this
is achieved quickest by α = 0. Such an estimate is known as weak error in the literature of stochastic
differential equations. By bias variance decomposition, it is weaker than the mean squared error.

3.2 Stochastic error

The next result gives a bound on the variance E[‖Bs(xδk − E[xδk])‖2]. It arises from the random index ik
in SGD (1.2). Theorem 3.3 relates the variance to the past mean squared residuals {E[‖Axδj − yδ‖2]}kj=1

and step sizes {ηj}kj=1. The extra exponent 1
2 follows from the quadratic structure of the least-squares

functional.

Theorem 3.3. For the SGD iteration (1.2), there holds

E[‖Bs(xδk+1 − E[xδk+1])‖2] ≤
k∑
j=1

η2j ‖Bs+
1
2 Πk

j+1(B)‖2E[‖Axδj − yδ‖2].

Proof. Let zk = xδk − E[xδk]. By the definition of the iterate xδk in (3.3), we have E[xδk+1] = E[xδk] −
ηk(BE[xδk]− Ātyδ), and thus zk satisfies

zk+1 = zk − ηk[((aik , x
δ
k)− yδik)aik − (BE[xδk]− Ātyδ)],

with z1 = 0. Upon rewriting, zk satisfies

zk+1 = (I − ηkB)zk + ηkMk, (3.7)

where the iteration noise Mk is defined by

Mk = (Bxδk − Ātyδ)− ((aik , x
δ
k)− yδik)aik .

Since xδj is measurable with respect to Fj−1, E[Mj |Fj−1] = 0, and thus E[Mj ] = 0. Further, for j 6= `,
Mj and M` satisfy

E[(Mj ,M`)] = 0, ∀j 6= `. (3.8)

Indeed, for j < `, we have E[(Mj ,M`)|F`−1] = (Mj ,E[M`|F`−1]) = 0, since Mj is measurable with
respect to F`−1. Then taking full expectation yields (3.8). Applying the recursion (3.7) repeatedly gives

zk+1 =

k∑
j=1

ηjΠ
k
j+1(B)Mj .

Then it follows from (3.8) that

E[‖Bszk+1‖2] =

k∑
j=1

k∑
`=1

ηjη`E[(BsΠk
j+1(B)Mj , B

sΠk
`+1(B)M`)] =

k∑
j=1

η2jE[‖BsΠk
j+1(B)Mj‖2].

Since ai = Atei (with ei being the ith Cartesian vector), we have (with ȳδ = n−1yδ)

Mj = At(Āxδj − ȳδ)− ((aij , x
δ
j)− yδij )A

teij

= At[(Āxδj − ȳδ)− ((aij , x
δ
j)− yδij )eij ] := AtNj .
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This and the identity ‖BsΠk
j+1(B)At‖2 = n‖BsΠk

j+1(B)B
1
2 ‖2 yield

E[‖BsΠk
j+1(B)Mj‖2] ≤ ‖BsΠk

j+1(B)At‖2E[‖Nj‖2] = ‖Bs+ 1
2 Πk

j+1(B)‖2E[n‖Nj‖2].

By the measurability of xδj with respect to Fj−1, we can bound E[‖Nj‖2] by

E[‖Nj‖2|Fj−1] = E[‖(Āxδj − ȳδ)− ((aij , x
δ
j)− yδij )eij‖

2|Fj−1]

≤
n∑
i=1

n−1‖((ai, xδj)− yδi )ei‖2 = n−1‖Axδj − yδ‖2,

where the inequality is due to the identity E[((aij , x
δ
j) − yδij )eij |Fj−1] = Āxj − ȳδ and bias-variance

decomposition. Thus, by taking full expectation, we obtain

E[‖Nj‖2] ≤ n−1E[‖Axδj − yδ‖2].

Combining the preceding bounds yields the desired assertion.

Last, we state a bound on the mean squared residual E[‖Axδk − yδ‖2]. The proof relies essentially on
Theorem 3.3 with s = 1

2 and Lemma A.4. Together with Theorem 3.3 with s = 0, it gives a bound on
the stochastic error, which is crucial for analyzing regularizing property of SGD.

Theorem 3.4. Let Assumption 2.1 and condition (2.3) be fulfilled. Then, there holds

E[‖Axδk+1 − yδ‖2] ≤ cαk−min(α,min(1,2p)(1−α)) ln k + c′αδ
2 max(1, ln k)2, (3.9)

where the constants cα and c′α depend on α, p, ‖w‖, ‖Ax1 − yδ‖ and ‖A‖.

Proof. Let rk = E[‖Axδk − yδ‖2] be the mean squared residual at iteration k. By bias-variance decompo-
sition and the triangle inequality, we have

rk+1 = ‖AE[xδk+1]− yδ‖2 + E[‖A(xδk+1 − E[xδk+1])‖2]

≤ 4‖A(E[xk+1]− x†)‖2 + 4‖AE[xδk+1 − xk+1]‖2 + E[‖A(xδk+1 − E[xδk+1])‖2] + 2δ2

:= 4I1 + 4I2 + I3 + I4.

With cp = ( p(1−α)
c0e(21−α−1) )

2p‖A‖2‖w‖2 and cα = ( 2α(2−α)
e(1−α) + 1)2, Theorems 3.1 and 3.2 immediately imply

I1 ≤ cpk−2p(1−α) and I2 ≤ cαδ2 max(1, ln k)2.

Next, we bound the variance I3 by Theorem 3.3 with s = 1/2 and Lemma A.1:

I3 ≤ n
k∑
j=1

η2j ‖Πk
j+1(B)B‖2rj ≤ c1

k−1∑
j=1

η2j∑k
i=j+1 ηi

rj + c2k
−2αrk, (3.10)

with c1 = e−1‖A‖2 and c2 = c0‖A‖2. Combining these estimates yields (with c3 = 4cp and c4 = 4cα + 2)

rk+1 ≤ c1
k−1∑
j=1

η2j∑k
i=j+1 ηi

rj + c2k
−2αrk + c3k

−2p(1−α) + c4δ
2 max(1, ln k)2. (3.11)

This and Lemma A.4 imply the desired estimate.

Remark 3.3. Due to the presence of the factor ln k in Theorem 3.4, the upper bound is not uniform in
k for noisy data, but the growth is very mild. For exact data y†, there holds:

E[‖Axk+1 − y†‖2] ≤ ck−min(α,min(1,2p)(1−α)) ln k,

where the constant c depends on α, p, ‖Ax1 − y†‖ and ‖A‖. The proof also indicates that the condition
c0 maxi ‖ai‖2 ≤ 1 in Assumption 2.1 may be replaced with c0‖B‖ ≤ 1.
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4 Regularizing property

In this section, we analyze the regularizing property of SGD with early stopping, and prove convergence
rates under a priori stopping rule. First, we show the convergence of the SGD iterate xk for exact data
to the minimum-norm solution x† defined in (2.1), for any α ∈ (0, 1).

Theorem 4.1. Let Assumption 2.1 be fulfilled. Then the SGD iterate xk converges to the minimum
norm solution x† as k →∞, i.e.,

lim
k→∞

E[‖xk − x†‖2] = 0.

Proof. The proof employs the decomposition (3.1), and bounds separately the mean and variance. It
follows from (3.6) that the mean E[ek] satisfies E[ek+1] = Πk

1(B)e1. The term ‖Πk
1(B)e1‖ converges to

zero as k → ∞. Specifically, we define a function rk(λ) : (0, ‖B‖] → [0, 1) by rk(λ) =
∏k
j=1(1 − ηkλ).

By Assumption 2.1, c0 maxi ‖ai‖2 ≤ 1, rk(λ) is uniformly bounded. By the inequality 1 − x ≤ e−x for

x ≥ 0, rk(λ) ≤ e−λ
∑k
j=1 ηj . This and the identity limk→∞

∑k
j=1 ηj = ∞ imply that for any λ > 0,

limk→∞ rk(λ) = 0. Hence, rk(λ) converges to zero pointwise, and the argument for Theorem 4.1 of [8]
yields limk→∞ ‖E[ek]‖ = 0. Next, we bound the variance E[‖xk+1 − E[xk+1]‖2]. By Theorem 3.3 (with
s = 0) and Lemma A.1 (with p = 1

2 ),

E[‖xk+1 − E[xk+1]‖2] ≤
k∑
j=1

η2j ‖Πk
j+1(B)B

1
2 ‖2E[‖A(xj − x†)‖2]

≤ sup
j

E[‖A(xj − x†)‖2]
(

(2e)−1
k−1∑
j=1

η2j∑k
i=j+1 ηi

+ c0k
−2α

)
.

By Theorem 3.4 (and Remark 3.3), the sequence {E[‖A(xj − x†)‖2]}∞j=1 is uniformly bounded. Then
Lemma A.3 implies

lim
k→∞

E[‖xk − E[xk]‖2] = 0.

The desired assertion follows from bias variance decomposition by

lim
k→∞

E[‖xk − x†‖2] ≤ lim
k→∞

‖E[xk]− x†‖2 + lim
k→∞

E[‖xk − E[xk]‖2] = 0.

It is well known that the minimum norm solution is characterized by x† − x1 ∈ range(At). By the
construction of the SGD iterate xk, xk−x1 always belongs to range(At), and thus the limit is the unique
minimum-norm solution x†.

Next we analyze the convergence of the SGD iterate xδk for noisy data yδ as δ → 0. To this end, we
need a bound on the variance E[‖xδk − E[xδk]‖2] of the iterate xk.

Lemma 4.1. Let Assumption 2.1 be fulfilled. Under the source condition (2.3), there holds

E[‖xδk+1 − E[xδk+1]‖2] ≤ ck−min(1−α,α+2p(1−α),2α) ln2 k + c′δ2,

where the constants c and c′ depend on α, p, ‖w‖, ‖Ax1 − yδ‖ and ‖A‖.

Proof. Let rk = E[‖Axδk − yδ‖2] be the expected squared residual at the kth iteration. Then Theorem
3.3 with s = 0 and Lemma A.1 with p = 1

2 imply (with c1 = (2e)−1)

E[‖xδk+1 − E[xδk+1]‖2] ≤
k−1∑
j=1

η2j ‖Πk
j+1(B)B

1
2 ‖2rj + η2k‖B

1
2 ‖2rk

≤ c1
k−1∑
j=1

η2j∑k
i=j+1 ηi

rj + c0k
−2αrk.
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where the last step is due to c0‖B‖ ≤ 1 from Assumption 2.1. Now Theorem 3.4 gives

rk+1 ≤ cαk−min(α,min(1,2p)(1−α)) ln k + c′αδ
2 max(ln k, 1)2.

The last two inequalities and Lemma A.3 imply the desired bound.

Now we can prove the regularizing property of SGD in Theorem 2.1.

Proof of Theorem 2.1. We appeal to the bias-variance decomposition (3.1):

E[‖xδk(δ) − x
†‖2] ≤ 2‖E[xδk(δ) − xk(δ)]‖

2 + 2‖E[xk(δ)]− x†‖2 + E[‖xδk(δ) − E[xδk(δ)]‖
2].

By the proof of Theorem 4.1 and condition (2.2), we have

lim
δ→0+

‖E[xk(δ)]− x†‖ = lim
k→∞

‖E[xk]− x†‖ = 0.

Thus, it suffices to analyze the errors ‖E[xδk(δ) − xk(δ)]‖
2 and E[‖xδk(δ) −E[xδk(δ)]‖

2]. By Theorem 3.2 and

the choice of k(δ) in condition (2.2), there holds

lim
δ→0+

‖E[xk(δ) − xδk(δ)]‖ = 0.

Last, by Lemma 4.1 and condition (2.2), we can bound the variance E[‖xδk(δ) − E[xδk(δ)]‖
2] by

lim
δ→0+

E[‖xδk(δ) − E[xδk(δ)]‖
2] = 0.

Combining the last three estimates completes the proof.

Remark 4.1. The consistency condition (2.2) in Theorem 2.1 requires α ∈ (0, 1). The constant step
size, i.e., α = 0, is not covered by the theory, for which the bootstrapping argument does not work.

Last, we give the proof of Theorem 2.2 on the convergence rate of SGD under a priori stopping rule.

Proof of Theorem 2.2. By bias-variance decomposition, we have

E[‖xδk+1 − x†‖2] = E[‖xδk+1 − E[xδk+1]‖2] + ‖E[xδk+1]− x†‖2.

It follows from Lemma 4.1 that

E[‖xδk+1 − E[xδk+1]‖2] ≤ ck−min(1−α,2p(1−α)+α,2α) ln2 k + c′δ2.

Meanwhile, by the triangle inequality and Theorems 3.1 and 3.2,

‖E[xδk+1]− x†‖2 ≤ 2c2pk
−2p(1−α) + 2c2αk

1−αδ̄2.

These two estimates together give the desired rate.

Remark 4.2. The a priori parameter choice in Theorem 2.2 requires a knowledge of the regularity index
p, and thus is infeasible in practice. The popular discrepancy principle also does not work directly due
to expensive residual evaluation, and further, it induces complex dependence between the iterates, which
requires different techniques for the analysis. Thus, it is of much interest to develop purely data-driven
rules without residual evaluation while automatically adapting to the unknown solution regularity, e.g.,
quasi-optimality criterion and balancing principle [13, 21].
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5 Preasymptotic convergence

In this part, we present the proofs of Theorems 2.3 and 2.4 on the preasymptotic weak and strong
convergence, respectively. First, we briefly discuss the low-frequency dominance on the initial error e1
under the source condition (2.3): if the singular values σi of n−

1
2A decay fast, e1 is indeed dominated

by PLe1, i.e., ‖PLe1‖ � ‖PHe1‖. We illustrate this with a simple probabilistic model: the sourcewise
representer w ∈ Rm follows the standard Gaussian distribution N (0, Im).

Proposition 5.1. In Condition (2.3), if w ∼ N (0, Im), then there hold

E[‖PLe1‖2] =

L∑
i=1

σ4p
i and E[‖PHe1‖2] =

r∑
i=L+1

σ4p
i .

Proof. Under Condition (2.3), we have e1 = Bpw = V Σ2pV tw. Thus, we have

‖PLe1‖2 = ‖
L∑
i=1

Viσ
2p
i (V tw)i‖2 =

L∑
i=1

σ4p
i (V tw)2i .

Since w ∼ N (0, Im) and the matrix V is orthonormal, (V tw)i ∼ N (0, 1), and E[(V tw)2i ] = 1, from which
the assertion on E[‖PLe1‖2] follows, and the other estimate follows similarly.

Remark 5.1. For polynomially decaying singular values σi, i.e., σi = ci−β, β > 0, and if 4pβ > 1,
simple computation shows that E[‖PLe1‖2] ≥ c4(4pβ−1)−1(1− (L+1)1−4pβ) and E[‖PHe1‖2] ≤ c4(4pβ−
1)−1(L1−4pβ −m1−4pβ), and thus

E[‖PLe1‖2]

E[‖PHe1‖2]
≥ 1− (L+ 1)1−4pβ

L1−4pβ −m1−4pβ .

Hence, for a truncation level L � m and 4pβ � 1, E[‖PLe1‖2] is dominating. The condition 4pβ � 1
holds for either severely ill-posed problems (large β) or highly regular solution (large p).

Now we give the proof of the preasymptotic weak convergence in Theorem 2.3.

Proof of Theorem 2.3. By applying PL to the SGD iteration (3.3), we have

PLe
δ
k+1 = PLe

δ
k − ηk(aik , e

δ
k)PLaik + ηkξikPLaik .

By taking conditional expectation with respect to Fk−1, since eδk = PLe
δ
k + PHe

δ
k, we obtain

E[PLe
δ
k+1|Fk−1] = PLe

δ
k − ηkn−1

n∑
i=1

(ai, e
δ
k)PLai + ηkn

−1
n∑
i=1

ξiPLai

= PLe
δ
k − ηkPLBeδk + ηkPLĀ

tξ

= (I − ηkPLBPL)PLe
δ
k − ηkPLBPHeδk + ηkPLĀ

tξ.

By the construction of PL and PH, PLBPHe
δ
k = 0, and then taking full expectation yields

E[PLe
δ
k+1] = (I − ηkPLBPL)E[PLe

δ
k] + ηkPLĀ

tξ.

Then the first assertion follows since ‖Āt‖ = n−
1
2 ‖B‖ 1

2 ≤ n−
1
2 c
− 1

2
0 , ‖PLĀtξ‖ ≤ c

− 1
2

0 δ̄, and ‖(I −
ηkPLBPL)PLek‖ ≥ (1− ηkσ2

L)‖PLek‖. Next, appealing again to the SGD iteration (3.3) gives

PHe
δ
k+1 = PHe

δ
k − ηk(aik , e

δ
k)PHaik + ηkξikPHaik .
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Thus the conditional expectation E[PHek+1|Fk−1] is given by

E[PHe
δ
k+1|Fk−1] = PHe

δ
k − ηkn−1

n∑
i=1

(ai, e
δ
k)PHai + ηkn

−1
n∑
i=1

ξiPHai

= (I − ηkPHBPH)PHe
δ
k + ηkPHĀ

tξ.

Then, taking full expectation and appealing to the triangle inequality yield the second estimate.

Remark 5.2. For exact data y†, we obtain the following simplified expressions:

‖E[PLek+1]‖ ≤ (1− ηkσ2
L)‖E[PLek]‖ and ‖E[PHek+1]‖ ≤ ‖E[PHek]‖.

Thus the low-frequency error always decreases faster than the high-frequency one in the weak sense.
Further, there is no interaction between the low- and high-frequency errors in the weak error.

Next we analyze preasymptotic strong convergence of SGD. We first analyze exact data y†. The
argument is needed for the proof of Theorem 2.4.

Lemma 5.1. If ηk ≤ c0 such that c0 maxi ‖ai‖ ≤ 1, then with c1 = σ2
L and c2 =

∑r
i=L+1 σ

2
i , there hold

E[‖PLek+1‖2|Fk−1] ≤ (1− ηkc1)‖PLek‖2 + c2c
−1
0 η2k‖PHek‖2,

E[‖PHek+1‖2|Fk−1] ≤ c2c−10 η2k‖PLek‖2 + (1 + c2c
−1
0 η2k)‖PHek‖2.

Proof. It follows from the SGD iteration (3.2) that PLek+1 = PLek − ηk(aik , ek)PLaik . This and the
condition c0 maxi ‖ai‖2 ≤ 1, imply

‖PLek+1‖2 = ‖PLek‖2 − 2ηk(aik , ek)(PLek, PLaik) + η2k(ek, aik)2‖PLaik‖2

≤ ‖PLek‖2 − 2ηk(aik , ek)(PLek, PLaik) + c−10 η2k(ek, aik)2.

The conditional expectation with respect to Fk−1 is given by

E[‖PLek+1‖2|Fk−1] ≤ ‖PLek‖2 − 2ηkn
−1

n∑
i=1

(ai, ek)(PLek, PLai) + c−10 η2kn
−1

n∑
i=1

(ek, ai)
2

= ‖PLek‖2 − 2ηk(PLek, PLBek) + c−10 η2k(ek, Bek).

With the splitting ek = PLek + PHek and the construction of PL and PH, we obtain

(PLek, PLBek) = (PLek, PLBPLek),

(ek, Bek) = (PLek, PLBPLek) + (PHek, PHBPHek).

Substituting the last two identities leads to

E[‖PLek+1‖2|Fk−1] ≤ ‖PLek‖2 − ηk(PLek, PLBPLek) + c−10 η2k(PHek, PHBPHek)

≤ (1− ηkσ2
L)‖PLek‖2 + c−10 η2kσ

2
L+1‖PHek‖2

≤ (1− c1ηk)‖PLek‖2 + c2c
−1
0 η2k‖PHek‖2.

This shows the first estimate. Next, appealing again to the SGD iteration (3.2), we obtain

PHek+1 = PHek − ηk(aik , ek)PHaik ,

which together with the condition c0 maxi ‖ai‖2 ≤ 1, and the Cauchy-Schwarz inequality, implies

‖PHek+1‖2 = ‖PHek‖2 − 2ηk(aik , ek)(PHek, PHaik) + η2k(ek, aik)2‖PHaik‖2

≤ ‖PHek‖2 − 2ηk(aik , ek)(PHek, PHaik) + c−10 η2k‖ek‖2‖PHaik‖2.
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Thus the conditional expectation E[‖PHek+1‖2|Fk−1] is given by

E[‖PHek+1‖2|Fk−1] ≤ ‖PHek‖2 − 2ηkn
−1

n∑
i=1

(ai, ek)(PHai, PHek) + c−10 η2kn
−1‖ek‖2

n∑
i=1

‖PHai‖2F

= ‖PHek‖2 − 2ηk(PHek, PHBek) + c−10 η2k‖ek‖2‖PHB
1
2 ‖2F .

Upon observing the identity ‖PHB
1
2 ‖2F =

∑r
i=L+1 σ

2
i ≡ c2 [12, Lemma 3.2], we deduce

E[‖PHek+1‖2|Fk−1] ≤ ‖PHek‖2 − 2ηk‖B
1
2PHek‖2 + c2c

−1
0 η2k‖ek‖2

≤ ‖PHek‖2 + c2c
−1
0 η2k(‖PLek‖2 + ‖PHek‖2).

This proves the second estimate and completes the proof of the lemma.

Remark 5.3. The proof gives a slightly sharper estimate on the low-frequency error:

E[‖PLek+1‖2|Fk−1] ≤ (1− ηkσ2
L)‖PLek‖2 + c−10 η2kσ

2
L+1‖PHek‖2.

Now we can present the proof of Theorem 2.4 on preasymptotic strong convergence.

Proof of Theorem 2.4. It follows from the SGD iteration (3.3) that

PLe
δ
k+1 = PLe

δ
k − ηk(aik , e

δ
k)PLaik + ηkξikPLaik ,

and upon expansion, we obtain

E[‖PLeδk+1‖2|Fk−1] = E[‖PLeδk − ηk(aik , e
δ
k)PLaik‖2|Fk−1] + η2kE[ξ2ik‖PLaik‖

2|Fk−1]

+ 2E[(PLe
δ
k − ηk(aik , e

δ
k)PLaik , ηkξikPLaik)|Fk−1] := I1 + I2 + I3.

It suffices to bound the three terms Ii. The term I1 can be bounded by the argument in Lemma 5.1 as

I1 ≤ (1− ηkc1)‖PLeδk‖2 + c2c
−1
0 η2k‖PHeδk‖2. (5.1)

For the term I2, by Assumption 2.1, there holds I2 ≤ η2kn
−1 maxi ‖PLai‖2

∑n
i=1 ξ

2
i ≤ c−10 η2k δ̄

2. For the
third term I3, by the identity (ai, e

δ
k) = (PLai, PLe

δ
k) + (PHai, PHe

δ
k), we have

I3 = 2n−1ηk

n∑
i=1

ξi[(PLai, PLe
δ
k)− ηk(ai, e

δ
k)‖PLai‖2] = 2n−1ηk

n∑
i=1

ξiI3,i,

with I3,i = (1 − ηk‖PLai‖2)(PLai, PLe
δ
k) − ηk(PHai, PHe

δ
k)‖PLai‖2. It suffices to bound I3,i. By the

condition on ηk, we deduce

I23,i = 2(1− ηk‖PLai‖2)2(PLai, PLe
δ
k)2 + 2η2k‖PLai‖4(PHai, PHe

δ
k)2

≤ 2(PLai, PLe
δ
k)2 + 2(PHai, PHe

δ
k)2,

and consequently,

n∑
i=1

I23,i ≤ 2

n∑
i=1

(
(PLai, PLe

δ
k)2 + (PHai, PHe

δ
k)2
)

= 2‖Ateδk‖2 ≤ 2n‖B‖‖eδk‖2.

Combining these two estimates with the Cauchy-Schwarz inequality leads to |I3| ≤ 2
√

2δ̄ηkσ1‖eδk‖. The
bounds on I1, I2 and I3 together show the first assertion. For the high-frequency part PHe

δ
k, we have

PHe
δ
k+1 = PHe

δ
k − ηk(aik , e

δ
k)PHaik + ηkξikPHaik ,
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and upon expansion, we obtain

E[‖PHeδk+1‖2|Fk−1] = E[‖PHeδk − ηk(aik , e
δ
k)PHaik‖2|Fk−1] + η2kE[ξ2ik‖PHaik‖

2|Fk−1]

+ 2E[(PHe
δ
k − ηk(aik , e

δ
k)PHaik , ηkξikPHaik)|Fk−1] := I4 + I5 + I6.

The term I4 can be bounded by the argument in Lemma 5.1 as

I4 ≤ c2c−10 η2k‖PLeδk‖2 + (1 + c2c
−1
0 η2k)‖PHeδk‖2.

Clearly, I5 ≤ c−10 η2k δ̄
2. For I6, simple computation yields

I6 = 2n−1ηk

n∑
i=1

ξi[(PHai, PHe
δ
k)− ηk(ai, ek)‖PHai‖2] := 2n−1ηk

n∑
i=1

ξiI6,i,

with I6,i given by I6,i = (PHai, PHe
δ
k)− ηk(ai, ek)‖PHai‖2. Simple computation shows

n∑
i=1

I26,i ≤ 2

n∑
i=1

(
(PHai, PHe

δ
k)2 + η2k(ai, ek)2‖PHai‖4

)
≤
(
2‖PHeδk‖2 + 2η2k max

i
‖ai‖4‖eδk‖2

) n∑
i=1

‖PHai‖2

≤ 2c2n(‖PHeδk‖2 + c−20 η2k‖eδk‖2),

where the last line is due to the identity ‖PHB
1
2 ‖2F =

∑r
i=L+1 σ

2
i ≡ c2 [12, Lemma 3.2]. This estimate

together with the Cauchy-Schwarz inequality gives

|I6| ≤ 2
√

2c
1
2
2 ηk δ̄

(
‖PHeδk‖2 + c−20 η2k‖eδk‖2

) 1
2

.

These estimates together show the second assertion, and complete the proof.

6 Numerical experiments

Now we present numerical experiments to complement the theoretical study. All the numerical examples,
i.e., phillips, gravity and shaw, are taken from the public domain MATLAB package Regutools1. They
are Fredholm integral equations of the first kind, with the first example being mildly ill-posed, and the
other two severely ill-posed. Unless otherwise stated, the examples are discretized with a dimension
n = m = 1000. The noisy data yδ is generated from the exact data y† as

yδi = y†i + δmax
j

(|y†j |)ξi, i = 1, . . . , n,

where δ is the relative noise level, and the random variables ξis follow the standard Gaussian distribution.
The initial guess x1 is fixed at x1 = 0. We present the mean squared error ek and/or residual rk, i.e.,

ek = E[‖x† − xk‖2] and rk = E[‖Axk − yδ‖2]. (6.1)

The expectation E[·] with respect to the random index ik is approximated by the average of 100 inde-
pendent runs. The constant c0 in the step size schedule is always taken to be c0 = 1/maxi ‖ai‖2, and
the exponent α is taken to be α = 0.1, unless otherwise stated. All the computations were carried out
on a personal laptop with 2.50 GHz CPU and 8.00G RAM by MATLAB 2015b.

1Available from http://www.imm.dtu.dk/~pcha/Regutools/, last accessed on January 8, 2018
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6.1 The role of the exponent α

The convergence of SGD depends essentially on the parameter α. To examine its role, we present in Figs.
1, 2 and 3 the numerical results for the examples with different noise levels, computed using different α
values, for 10000 iterations. The smaller the α value is, the quicker the algorithm reaches the convergence
and the iterate diverges for noisy data. This agrees with the analysis in Section 4. Hence, a smaller α value
is desirable for convergence. However, in the presence of large noise, a too small α value may sacrifice
the attainable accuracy; see Figs. 1(c) and 2(c) for illustrations; and also the oscillation magnitudes of
the iterates and the residual tend to be larger. This is possibly due to the intrinsic variance for large step
sizes, and it would be interesting to precisely characterize the dynamics, e.g., with stochastic differential
equations [16]. In practice, the fluctuations may cause problems with a proper stopping rule (especially
with only one single trajectory). Further, it is noteworthy that with 10000 iterations, the iterate may or
may not reach convergence, dependent of the noise level δ and regularity index p of the exact solution
x†; see Section 6.4 for further discussions.
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Figure 1: Numerical results for phillips with different noise levels by SGD (with various α).

6.2 Comparison with Landweber method and randomized Kaczmarz method

Since SGD is a randomized version of the Landweber method, in Fig. 4, we compare their performance.
To compare the iteration complexity only, we count one Landweber iteration as n SGD iterations, and
the full gradient evaluation is indicated by flat segments in the plots. For all examples, the error ek
and residual rk first experience fast reduction, and then the error starts to increase, which is especially
pronounced at δ = 5 × 10−2, exhibiting the typical semiconvergence behavior. During the initial stage,
SGD is much more effective than SGD: indeed one single loop over all the data can already significantly
reduce the error ek and produce an acceptable approximation. This interesting observation will be further
examined in Section 6.3 below. However, the nonvanishing variance of the stochastic gradient slows down
the asymptotic convergence of SGD, and the error ek and the residual rk eventually tend to oscillate for
noisy data, before finally diverge.
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Figure 2: Numerical results for gravity with different noise levels by SGD (with various α).
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Figure 3: Numerical results for shaw with different noise levels by SGD (with various α).
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Figure 4: Numerical results for the examples by SGD (with α = 0.1) and LM.

One popular variant of the randomized Kaczmarz method (RKM) [25] reads

xδk+1 = xδk −
(aik , x

δ
k)− yδik

‖aik‖2
aik , k = 1, 2, . . . ,

where the ith row is chosen with a probability ‖ai‖2/‖A‖2F and a step size such that each step is actually
an orthogonal projection into the hyperplane defined by (aik , x) = yδik . It is known that RKM is SGD with
specialized algorithmic parameters, i.e., a weighted sampling and special step size schedule [19, 12]. In
Fig. 5 we present comparative results between SGD (with polynomially decaying step sizes and uniform
sampling) and RKM. It is observed that when compared with SGD, RKM converges faster at the initial
stage, but also diverges faster and suffers from larger oscillations in both residual rk and error ek. This
shows clearly the crucial role of the algorithmic parameters in SGD for achieving a good balance between
stability and accuracy. It is of much interest to quantify their influences on the convergence in both
preasymptotic and asymptotic regimes and interplays with other problem parameters, and then to adapt
these parameters for optimized performance.

6.3 Preasymptotic convergence

Now we examine the preasymptotic strong convergence of SGD (note that the weak error satisfies a
Landweber type iteration). Theorem 2.4 (and Lemma 5.1) predicts that during first iterations, the low-
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Figure 5: Numerical results for the examples by SGD (with α = 0.1) and RKM.

frequency error eL := E[‖PLek‖2] decreases rapidly, but the high-frequency error eH := E[‖PHek‖2] can
at best decay mildly. For all examples, the first five singular vectors can well capture the total energy
of the initial error e1 = x∗ − x1, which suggests a truncation level L = 5 for the numerical illustration.
We plot the low- and high-frequency errors eL and eH and the total error e = E[‖ek‖2] in Fig. 6. The
low-frequency error eL decays much more rapidly during the initial iterations, and since under the source
condition (2.3), eL is indeed dominant, the total error e also enjoys a fast initial decay. Intuitively, this
behavior may be explained as follows. The rows of the matrix A mainly contain low-frequency modes,
and thus each SGD iteration tends to mostly remove the low-frequency component eL of the initial error
x∗ − x1. The high-frequency component eH experiences a similar but much slower decay. Eventually,
both components level off and oscillate, due to the deleterious effect of noise. These observations confirm
the preasymptotic analysis in Section 5. For noisy data, the error ek can be highly oscillating, so is the
residual rk. The larger the noise level δ is, the larger the oscillation magnitude becomes.

6.4 Asymptotic convergence

To examine the asymptotic convergence (with respect to the noise level δ), in Table 1, we present the
smallest error e along the trajectory and the number of iterations to reach the error e for several different
noise levels. It is observed that for all three examples, the minimal error e increases steadily with the
noise level δ, whereas also the required number of iterations decreases dramatically, which qualitatively
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Figure 6: The error decay for the examples with two noise levels: δ = 10−2 (top) and δ = 5 × 10−2

(bottom), with a truncation level L = 5.

agrees well with Remark 2.1 and also Figs. 1, 2 and 3 for graphical illustrations. Thus, SGD is especially
efficient in the regime of high noise levels, for which one or two epochs can already give very good
approximations, due to the fast preasymptotic convergence. This agrees with the common belief that
SGD is most effective for finding an approximate solution that is not highly accurate. At low noise
levels, the example shaw takes far more iterations to reach the smallest error. This might be attributed
to the fact that the exponent p in the source condition (2.3) for shaw is much smaller than that for
phillips or gravity, since the low-frequency modes are less dominating, as roughly indicated by the
red curves in Fig. 6. Interestingly, for all examples, the error e undergoes sudden change when the noise
level δ increases from 1e-2 to 3e-2. This might be related to the exponent α in the step size schedule,
which probably should be adapted to the noise level δ in order to achieve optimal balance between the
computational efficiency and statistical errors.

Table 1: The (minimal) expected error e for the examples.
δ phillips gravity shaw

1e-3 (1.09e-3,7.92e4) (3.22e-1,4.55e5) (2.92e0,3.55e6)
5e-3 (3.23e-3,1.83e4) (5.65e-1,6.19e4) (3.21e0,1.95e6)
1e-2 (6.85e-3,3.09e3) (6.21e-1,4.60e4) (6.75e0,1.15e6)
3e-2 (4.74e-2,4.20e2) (2.60e0, 6.50e3) (3.50e1,7.80e3)
5e-2 (6.71e-2,1.09e3) (6.32e0, 2.55e3) (3.70e1,1.28e3)
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7 Concluding remarks

In this work, we have analyzed the regularizing property of SGD for solving linear inverse problems, by
extending properly deterministic inversion theory. The study indicates that with proper early stopping
and suitable step size schedule, it is regularizing in the sense that iterates converge to the exact solution
in the mean squared norm as the noise level tends to zero. Further, under the canonical source condition,
we prove error estimates, which depend on the noise level and the schedule of step sizes. Further we
analyzed the preasymptotic convergence behavior of SGD, and proved that the low-frequency error can
decay much faster than high-frequency error. This allows explaining the fast initial convergence of SGD
typically observed in practice. The findings are complemented by extensive numerical experiments.

There are many interesting questions related to stochastic iteration algorithms that deserve further
research. One outstanding issue is stopping criterion, and rigorous yet computationally efficient criteria
have to be developed. In practice, the performance of SGD can be sensitive to the exponent α in the step
size schedule [20]. Promising strategies for overcoming the drawback include averaging [22] and variance
reduction [14]. It is of much interest to analyze such schemes in the context of inverse problems, including
nonlinear inverse problems and penalized variants.
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A Elementary inequalities

In this appendix, we collect some useful inequalities. We begin with an estimate on the operator norm.
This estimate is well known (see, e.g., [17]).

Lemma A.1. For j < k, and any symmetric and positive semidefinite matrix S and step sizes ηj ∈
(0, ‖S‖−1] and p ≥ 0, there holds

‖
k∏
i=j

(I − ηiS)Sp‖ ≤ pp

ep(
∑k
i=j ηi)

p
.
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Next we derive basic estimates on finite sums involving ηj = c0j
−α, with c0 > 0 and α ∈ [0, 1).

Lemma A.2. For the choice ηj = c0j
−α, α ∈ [0, 1) and r ∈ [0, 1], for any 1 ≤ j < k, there holds

k∑
i=1

ηi ≥ (21−α − 1)(1− α)−1c0k
1−α, (A.1)

k−1∑
j=1

ηj

(
∑k
i=j+1 ηi)

r
≤
{
c1−r0 B(1− α, 1− r)k(1−r)(1−α), r ∈ [0, 1),
2α((1− α)−1 + ln k) r = 1,

(A.2)

where B(·, ·) is the Beta function defined by B(a, b) =
∫ 1

0
sa−1(1− s)b−1ds for any a, b > 0.

Proof. Since α ∈ [0, 1), we have c−10

∑k
i=1 ηi ≥

∫ k+1

1
s−αds = (1−α)−1((k+1)1−α−1) ≥ (1−α)−1(21−α−

1)k1−α. This shows the estimate (A.1). Next, since ηi ≥ c0k−α, for any i = j + 1, . . . , k, we have

c−10

k∑
i=j+1

ηi ≥ k−α(k − j). (A.3)

If r ∈ [0, 1), by changing variables and by the definition of the Beta function B(·, ·), we have

cr−10

k−1∑
j=1

ηj

(
∑k
i=j+1 ηi)

r
≤ krα

k−1∑
j=1

j−α(k − j)−r

≤krα
∫ k

0

s−α(k − s)−rds = B(1− α, 1− r)k(1−r)(1−α).

For r = 1, it can be derived directly

k−1∑
j=1

ηj∑k
i=j+1 ηi

≤kα
[ k2 ]∑
j=1

j−α(k − j)−1 + kα
k−1∑

j=[ k2 ]+1

j−α(k − j)−1

≤2kα−1
[ k2 ]∑
j=1

j−α + 2α
k−1∑

j=[ k2 ]+1

(k − j)−1.

Simple computation gives
∑k−1
j=[ k2 ]+1

(k − j)−1 ≤ ln k and
∑[ k2 ]
j=1 j

−α ≤ (1 − α)−1(k2 )1−α. Combining the

last two estimates yields the estimate (A.2).

The next result gives some further estimates.

Lemma A.3. For ηj = c0j
−α, with α ∈ (0, 1), β ∈ [0, 1], and r ≥ 0, there hold

[ k2 ]∑
j=1

η2j

(
∑k
i=j+1 ηi)

r
j−β ≤ cα,β,rk−r(1−α)+max(0,1−2α−β),

k−1∑
j=[ k2 ]+1

η2j

(
∑k
i=j+1 ηi)

r
j−β ≤ c′α,β,rk−((2−r)α+β)+max(0,1−r),

where we slightly abuse k−max(0,0) for ln k, and the constants cα,β,r and c′α,β,r are given by

cα,β,r = c2−r0

 2r(2α+ β − 1)−1, 2α+ β > 1,
2, 2α+ β = 1,
2r−1+2α+β(1− 2α− β)−1, 2α+ β < 1,

22



c′α,β,r = 22α+βc2−r0

 (r − 1)−1, r > 1,
1, r = 1,
2r−1(1− r)−1, r < 1.

Proof. It follows from the inequality (A.3) that

cr−20

[ k2 ]∑
j=1

η2j

(
∑k
i=j+1 ηi)

r
j−β =

[ k2 ]∑
j=1

j−(2α+β)

(
∑k
i=j+1 i

−α)r

≤ krα
[ k2 ]∑
j=1

j−(2α+β)(k − j)−r ≤ 2rk−r+rα
[ k2 ]∑
j=1

j−(2α+β)

≤ 2rkrα−r


(2α+ β − 1)−1, 2α+ β > 1,
ln k, 2α+ β = 1,
(1− 2α− β)−1(k2 )1−2α−β , 2α+ β < 1.

Collecting terms shows the first estimate. The second estimate follows similarly.

Last, we give a technical lemma on recursive sequences.

Lemma A.4. Let ηj = c0j
−α, α ∈ (0, 1). Given {bj}∞j=1 ⊂ R+, a1 ≥ 0 and ci > 0, {aj}∞j=2 ⊂ R+

satisfies

ak+1 = c1

k−1∑
j=1

η2j∑k
i=j+1 ηi

aj + c2k
−2αak + bk.

If bj is nondecreasing, then for some c(α, ci) dependent of α and ci, there holds

ak+1 ≤ c(α, ci)k−min(α,1−α) ln k + 2bk.

Proof. Let cα = c(α, 0, 1) + c′(α, 0, 1) from Lemma A.3. Take k∗ ∈ N such that c1cαk
−min(1−α,α) ln k +

c2k
−2α < 1/2 for any k ≥ k∗. The existence of a finite k∗ is due to the monotonicity of f(t) =

t−min(1−α,α) ln t for large t > 0 and limt→∞ f(t) = 0. Now we claim that there exists a∗ > 0 such that
ak ≤ a∗ + 2bk for any k ∈ N. Let a∗ = max1≤k≤k∗ ak. The claim is trivial for k ≤ k∗. Suppose it holds
for some k ≥ k∗. Then by Lemma A.3 and the monotonicity of bj ,

ak+1 ≤ max
1≤i≤k

ai

(
c1

k−1∑
j=1

η2j∑k
i=j+1 ηi

+ c2k
−2α

)
+ bk

≤ (a∗ + 2bk)(c1cαk
−min(α,1−α) ln k + c2k

−2α) + bk

≤ 1
2 (a∗ + 2bk) + bk ≤ a∗ + 2bk+1,

This shows the claim by mathematical induction. Next, by Lemma A.3, for any k > k∗, we have

ak+1 ≤ (a∗ + 2bk)(c1cαk
−min(α,1−α) ln k + c2k

−2α) + bk

≤ c(α, ci)k−min(α,1−α) ln k + 2bk.

This completes the proof of the lemma.

Remark A.1. By the argument in Lemma A.4 and a standard bootstrapping argument, we deduce the
following assertions. If supj bj <∞, then {aj}∞j=1 is bounded by a constant dependent of α, supj bj and
cis. Further, if bj ≤ c3j

−γ , j ∈ N with γ > 0, then for some c(α, γ, ci, `) dependent of α, γ, ` and cis,
there holds

ak+1 ≤ c(α, γ, ci, `)k−min(`α,1−α,γ) ln` k.
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