183 research outputs found

    Optimal quadrature-sparsification for integral operator approximation

    Get PDF
    The design of sparse quadratures for the approximation of integral operators related to symmetric positive-semidefinite kernels is addressed. Particular emphasis is placed on the approximation of the main eigenpairs of an initial operator and on the assessment of the approximation accuracy. Special attention is drawn to the design of sparse quadratures with support included in fixed finite sets of points (that is, quadrature-sparsification), this framework encompassing the approximation of kernel matrices. For a given kernel, the accuracy of a quadrature approximation is assessed through the squared Hilbert--Schmidt norm (for operators acting on the underlying reproducing kernel Hilbert space) of the difference between the integral operators related to the initial and approximate measures; by analogy with the notion of kernel discrepancy, the underlying criterion is referred to as the squared-kernel discrepancy between the two measures. In the quadrature-sparsification framework, sparsity of the approximate quadrature is promoted through the introduction of an ℓ1\ell^{1}-type penalization, and the computation of a penalized squared-kernel-discrepancy-optimal approximation then consists in a convex quadratic minimization problem; such quadratic programs can in particular be interpreted as the Lagrange dual formulations of distorted one-class support-vector machines related to the squared kernel. Error bounds on the induced spectral approximations are derived, and the connection between penalization, sparsity, and accuracy of the spectral approximation is investigated. Numerical strategies for solving large-scale penalized squared-kernel-discrepancy minimization problems are discussed, and the efficiency of the approach is illustrated by a series of examples. In particular, the ability of the proposed methodology to lead to accurate approximations of the main eigenpairs of kernel matrices related to large-scale datasets is demonstrated

    Hierarchical interpolative factorization for elliptic operators: integral equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for integral equations (HIF-IE) associated with elliptic problems in two and three dimensions. This factorization takes the form of an approximate generalized LU decomposition that permits the efficient application of the discretized operator and its inverse. HIF-IE is based on the recursive skeletonization algorithm but incorporates a novel combination of two key features: (1) a matrix factorization framework for sparsifying structured dense matrices and (2) a recursive dimensional reduction strategy to decrease the cost. Thus, higher-dimensional problems are effectively mapped to one dimension, and we conjecture that constructing, applying, and inverting the factorization all have linear or quasilinear complexity. Numerical experiments support this claim and further demonstrate the performance of our algorithm as a generalized fast multipole method, direct solver, and preconditioner. HIF-IE is compatible with geometric adaptivity and can handle both boundary and volume problems. MATLAB codes are freely available.Comment: 39 pages, 14 figures, 13 tables; to appear, Comm. Pure Appl. Mat

    Optimal damping with hierarchical adaptive quadrature for efficient Fourier pricing of multi-asset options in LĂ©vy models

    Get PDF
    Efficient pricing of multi-asset options is a challenging problem in quantitative finance. When the characteristic function is available, Fourier-based methods become competitive compared to alternative techniques because the integrand in the frequency space has often higher regularity than in the physical space. However, when designing a numerical quadrature method for most of these Fourier pricing approaches, two key aspects affecting the numerical complexity should be carefully considered: (i) the choice of the damping parameters that ensure integrability and control the regularity class of the integrand and (ii) the effective treatment of the high dimensionality. To address these challenges, we propose an efficient numerical method for pricing European multi-asset options based on two complementary ideas. First, we smooth the Fourier integrand via an optimized choice of damping parameters based on a proposed heuristic optimization rule. Second, we use sparsification and dimension-adaptivity techniques to accelerate the convergence of the quadrature in high dimensions. Our extensive numerical study on basket and rainbow options under the multivariate geometric Brownian motion and some L'evy models demonstrates the advantages of adaptivity and our damping rule on the numerical complexity of the quadrature methods. Moreover, our approach achieves substantial computational gains compared to the Monte Carlo method

    IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains

    Full text link
    This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straight-forward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.Comment: version 3, version after revisio

    An embedded boundary integral solver for the stokes equations

    Get PDF
    We present a new method for the solution of the Stokes equations. Our goal is to develop a robust and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our method is based on Anita Mayo\u27s method for the Poisson\u27s equation: “The Fast Solution of Poisson\u27s and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285– 299. We embed the domain in a rectangular domain, for which fast solvers are available, and we impose the boundary conditions as interface (jump) conditions on the velocities and tractions. We use an indirect boundary integral formulation for the homogeneous Stokes equations to compute the jumps. The resulting integral equations are discretized by Nystrom\u27s method. The rectangular domain problem is discretized by finite elements for a velocity-pressure formulation with equal order interpolation bilinear elements (Q1-Q1). Stabilization is used to circumvent the inf-sup condition for the pressure space. For the integral equations, fast matrix vector multiplications are achieved via a NlogN algorithm based on a block representation of the discrete integral operator, combined with (kernel independent) singular value decomposition to sparsify low-rank blocks. Our code is built on top of PETSc, an MPI based parallel linear algebra library. The regular grid solver is a Krylov method (Conjugate Residuals) combined with an optimal two-level Schwartz-preconditioner. For the integral equation we use GMRES. We have tested our algorithm on several numerical examples and we have observed optimal convergence rates

    CECM: A continuous empirical cubature method with application to the dimensional hyperreduction of parameterized finite element models

    Full text link
    We present the Continuous Empirical Cubature Method (CECM), a novel algorithm for empirically devising efficient integration rules. The CECM aims to improve existing cubature methods by producing rules that are close to the optimal, featuring far less points than the number of functions to integrate. The CECM consists on a two-stage strategy. First, a point selection strategy is applied for obtaining an initial approximation to the cubature rule, featuring as many points as functions to integrate. The second stage consists in a sparsification strategy in which, alongside the indexes and corresponding weights, the spatial coordinates of the points are also considered as design variables. The positions of the initially selected points are changed to render their associated weights to zero, and in this way, the minimum number of points is achieved. Although originally conceived within the framework of hyper-reduced order models (HROMs), we present the method's formulation in terms of generic vector-valued functions, thereby accentuating its versatility across various problem domains. To demonstrate the extensive applicability of the method, we conduct numerical validations using univariate and multivariate Lagrange polynomials. In these cases, we show the method's capacity to retrieve the optimal Gaussian rule. We also asses the method for an arbitrary exponential-sinusoidal function in a 3D domain, and finally consider an example of the application of the method to the hyperreduction of a multiscale finite element model, showcasing notable computational performance gains. A secondary contribution of the current paper is the Sequential Randomized SVD (SRSVD) approach for computing the Singular Value Decomposition (SVD) in a column-partitioned format. The SRSVD is particularly advantageous when matrix sizes approach memory limitations

    Multilevel Double Loop Monte Carlo and Stochastic Collocation Methods with Importance Sampling for Bayesian Optimal Experimental Design

    Full text link
    An optimal experimental set-up maximizes the value of data for statistical inferences and predictions. The efficiency of strategies for finding optimal experimental set-ups is particularly important for experiments that are time-consuming or expensive to perform. For instance, in the situation when the experiments are modeled by Partial Differential Equations (PDEs), multilevel methods have been proven to dramatically reduce the computational complexity of their single-level counterparts when estimating expected values. For a setting where PDEs can model experiments, we propose two multilevel methods for estimating a popular design criterion known as the expected information gain in simulation-based Bayesian optimal experimental design. The expected information gain criterion is of a nested expectation form, and only a handful of multilevel methods have been proposed for problems of such form. We propose a Multilevel Double Loop Monte Carlo (MLDLMC), which is a multilevel strategy with Double Loop Monte Carlo (DLMC), and a Multilevel Double Loop Stochastic Collocation (MLDLSC), which performs a high-dimensional integration by deterministic quadrature on sparse grids. For both methods, the Laplace approximation is used for importance sampling that significantly reduces the computational work of estimating inner expectations. The optimal values of the method parameters are determined by minimizing the average computational work, subject to satisfying the desired error tolerance. The computational efficiencies of the methods are demonstrated by estimating the expected information gain for Bayesian inference of the fiber orientation in composite laminate materials from an electrical impedance tomography experiment. MLDLSC performs better than MLDLMC when the regularity of the quantity of interest, with respect to the additive noise and the unknown parameters, can be exploited
    • 

    corecore