4,003 research outputs found

    Exact Speedup Factors and Sub-Optimality for Non-Preemptive Scheduling

    Get PDF
    Fixed priority scheduling is used in many real-time systems; however, both preemptive and non-preemptive variants (FP-P and FP-NP) are known to be sub-optimal when compared to an optimal uniprocessor scheduling algorithm such as preemptive earliest deadline first (EDF-P). In this paper, we investigate the sub-optimality of fixed priority non-preemptive scheduling. Specifically, we derive the exact processor speed-up factor required to guarantee the feasibility under FP-NP (i.e. schedulability assuming an optimal priority assignment) of any task set that is feasible under EDF-P. As a consequence of this work, we also derive a lower bound on the sub-optimality of non-preemptive EDF (EDF-NP). As this lower bound matches a recently published upper bound for the same quantity, it closes the exact sub-optimality for EDF-NP. It is known that neither preemptive, nor non-preemptive fixed priority scheduling dominates the other, in other words, there are task sets that are feasible on a processor of unit speed under FP-P that are not feasible under FP-NP and vice-versa. Hence comparing these two algorithms, there are non-trivial speedup factors in both directions. We derive the exact speed-up factor required to guarantee the FP-NP feasibility of any FP-P feasible task set. Further, we derive the exact speed-up factor required to guarantee FP-P feasibility of any constrained-deadline FP-NP feasible task set

    Speed-scaling with no Preemptions

    Full text link
    We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor's speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a (1+ϵ)αB~α(1+\epsilon)^{\alpha}\tilde{B}_{\alpha}-approximation algorithm, where B~α\tilde{B}_{\alpha} is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio B~α((1+ϵ)(1+wmaxwmin))α\tilde{B}_{\alpha}((1+\epsilon)(1+\frac{w_{\max}}{w_{\min}}))^{\alpha} improving the best known result by a factor of (52)α1(wmaxwmin)α(\frac{5}{2})^{\alpha-1}(\frac{w_{\max}}{w_{\min}})^{\alpha}. Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions

    Energy-efficient algorithms for non-preemptive speed-scaling

    Full text link
    We improve complexity bounds for energy-efficient speed scheduling problems for both the single processor and multi-processor cases. Energy conservation has become a major concern, so revisiting traditional scheduling problems to take into account the energy consumption has been part of the agenda of the scheduling community for the past few years. We consider the energy minimizing speed scaling problem introduced by Yao et al. where we wish to schedule a set of jobs, each with a release date, deadline and work volume, on a set of identical processors. The processors may change speed as a function of time and the energy they consume is the α\alphath power of its speed. The objective is then to find a feasible schedule which minimizes the total energy used. We show that in the setting with an arbitrary number of processors where all work volumes are equal, there is a 2(1+ε)(5(1+ε))α1B~α=Oα(1)2(1+\varepsilon)(5(1+\varepsilon))^{\alpha -1}\tilde{B}_{\alpha}=O_{\alpha}(1) approximation algorithm, where B~α\tilde{B}_{\alpha} is the generalized Bell number. This is the first constant factor algorithm for this problem. This algorithm extends to general unequal processor-dependent work volumes, up to losing a factor of ((1+r)r2)α(\frac{(1+r)r}{2})^{\alpha} in the approximation, where rr is the maximum ratio between two work volumes. We then show this latter problem is APX-hard, even in the special case when all release dates and deadlines are equal and rr is 4. In the single processor case, we introduce a new linear programming formulation of speed scaling and prove that its integrality gap is at most 12α112^{\alpha -1}. As a corollary, we obtain a (12(1+ε))α1(12(1+\varepsilon))^{\alpha -1} approximation algorithm where there is a single processor, improving on the previous best bound of 2α1(1+ε)αB~α2^{\alpha-1}(1+\varepsilon)^{\alpha}\tilde{B}_{\alpha} when α25\alpha \ge 25
    corecore