86 research outputs found

    Optical Asymmetric Modulation for VLC Systems

    Get PDF
    The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity

    Transceiver Design for MIMO DCO-OFDM in Visible Light Communication

    Get PDF
    Direct current-biased optical-orthogonal frequency-division multiplexing (DCO-OFDM) is a simple yet spectrally efficient multicarrier modulation scheme for visible light communication (VLC). But in multiple-input multiple-output (MIMO) scenario, which is more practical for VLC due to the LED deployment, the research on DCO-OFDM is still limited and calls for in-depth investigation. In this chapter, we first study the basic modulation scheme of DCO-OFDM, including the design of conventional receiver without considering the clipping noise. Secondly, we present a novel receiver for combating clipping distortion in the DCO-OFDM system, which can reconstruct the clipping noise and subtract it from the received signal. Thirdly, we generalize the results to MIMO scenario and investigate the preliminary transceiver design, which is based on the minimum mean-square error (MMSE) criteria. Based on this, we propose a precoding algorithm to further enhance the performance. Finally, the symbol error rate performance is compared through computer simulations to give the reader a whole picture of the performance of MIMO VLC system

    DC-Informative Joint Color-Frequency Modulation for Visible Light Communications

    Full text link
    In this paper, we consider the problem of constellation design for a visible light communication (VLC) system using red/green/blue light-emitting diodes (RGB LED), and propose a method termed DC-informative joint color-frequency modulation (DCI-JCFM). This method jointly utilizes available diversity resources including different optical wavelengths, multiple baseband subcarriers, and adaptive DC-bias. Constellation is designed in a high dimensional space, where the compact sphere packing advantage over lower dimensional counterparts is utilized. Taking into account multiple practical illumination constraints, a non-convex optimization problem is formulated, seeking the least error rate with a fixed spectral efficiency. The proposed scheme is compared with a decoupled scheme, where constellation is designed separately for each LED. Notable gains for DCI-JCFM are observed through simulations where balanced, unbalanced and very unbalanced color illuminations are considered.Comment: submitted to Journal of Lightwave Technology, Aug. 5th 201

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    The Spatial Dimming Scheme for the MU-MIMO-OFDM VLC System

    Get PDF
    Multiuser visible light communication (MU-VLC) systems utilizing multiple-input multiple-output (MIMO) and orthogonal frequency-division multiplexing (OFDM) are gaining increased attentions recently. Visible light communication (VLC) links are expected to work under different illumination conditions and, thus, the need for dimming control mechanisms. However, the traditional analog- and digital-based dimming schemes have adverse effects on the data communications performance, such as clipping distortion and the variation of the duty cycle. In this paper, spatial dimming schemes based on the zero-forcing and the minimum mean-squared error precoding schemes are proposed for direct-current biased optical OFDM based indoor MU-MIMO VLC system, and the bipolar optical OFDM signal is biased by a fixed dc level. Transmit antenna selection algorithms are designed for the optimum working light emitting diodes (LEDs) subset at each dimming level. Owing to the simultaneously exploration of the selection diversity of LEDs-based lights and the channel state information, the proposed spatial dimming schemes outperform the traditional dimming schemes, which is also verified by simulation results. Thus, the proposed schemes are shown to have a great potential to be applied in practical MU-MIMO-OFDM VLC systems

    Deep Learning Based Proactive Optimization for Mobile LiFi Systems with Channel Aging

    Full text link
    This paper investigates the channel aging problem of mobile light-fidelity (LiFi) systems. In the LiFi physical layer, the majority of the optimization problems for mobile users are non-convex and require the use of dual decomposition or heuristics techniques. Such techniques are based on iterative algorithms, and often, cause a high processing delay at the physical layer. Hence, the obtained solutions are no longer optimal since the LiFi channels are evolving. In this paper, a proactive-optimization (PO) approach that can alleviate the LiFi channel aging problem is proposed. The core idea is to design a long-short-term-memory (LSTM) network that is capable of predicting posterior positions and orientations of mobile users, which can be then used to predict their channel coefficients. Consequently, the obtained channel coefficients can be exploited to derive near-optimal transmission-schemes prior to the intended service-time, which enables real-time service. Through various simulations, the performance of the designed LSTM model is evaluated in terms of prediction error and time, as well as its application in a practical LiFi optimization problem
    • …
    corecore