1,597 research outputs found

    Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control

    Get PDF
    Wireless sensor networks (WSNs) are autonomous networks of spatially distributed sensor nodes which are capable of wirelessly communicating with each other in a multi-hop fashion. Among different metrics, network lifetime and utility and energy consumption in terms of carbon footprint are key parameters that determine the performance of such a network and entail a sophisticated design at different abstraction levels. In this paper, wireless energy harvesting (WEH), wake-up radio (WUR) scheme and error control coding (ECC) are investigated as enabling solutions to enhance the performance of WSNs while reducing its carbon footprint. Specifically, a utility-lifetime maximization problem incorporating WEH, WUR and ECC, is formulated and solved using distributed dual subgradient algorithm based on Lagrange multiplier method. It is discussed and verified through simulation results to show how the proposed solutions improve network utility, prolong the lifetime and pave the way for a greener WSN by reducing its carbon footprint

    Building a green connected future: smart (Internet of) Things for smart networks

    Get PDF
    The vision of Internet of Things (IoT) promises to reshape society by creating a future where we will be surrounded by a smart environment that is constantly aware of the users and has the ability to adapt to any changes. In the IoT, a huge variety of smart devices is interconnected to form a network of distributed agents that continuously share and process information. This communication paradigm has been recognized as one of the key enablers of the rapidly emerging applications that make up the fabric of the IoT. These networks, often called wireless sensor networks (WSNs), are characterized by the low cost of their components, their pervasive connectivity, and their self-organization features, which allow them to cooperate with other IoT elements to create large-scale heterogeneous information systems. However, a number of considerable challenges is arising when considering the design of large-scale WSNs. In particular, these networks are made up by embedded devices that suffer from severe power constraints and limited resources. The advent of low-power sensor nodes coupled with intelligent software and hardware technologies has led to the era of green wireless networks. From the hardware perspective, green sensor nodes are endowed with energy scavenging capabilities to overcome energy-related limitations. They are also endowed with low-power triggering techniques, i.e., wake-up radios, to eliminate idle listening-induced communication costs. Green wireless networks are considered a fundamental vehicle for enabling all those critical IoT applications where devices, for different reasons, do not carry batteries, and that therefore only harvest energy and store it for future use. These networks are considered to have the potential of infinite lifetime since they do not depend on batteries, or on any other limited power sources. Wake-up radios, coupled with energy provisioning techniques, further assist on overcoming the physical constraints of traditional WSNs. In addition, they are particularly important in green WSNs scenarios in which it is difficult to achieve energy neutrality due to limited harvesting rates. In this PhD thesis we set to investigate how different data forwarding mechanisms can make the most of these green wireless networks-enabling technologies, namely, energy harvesting and wake-up radios. Specifically, we present a number of cross-layer routing approaches with different forwarding design choices and study their consequences on network performance. Among the most promising protocol design techniques, the past decade has shown the increasingly intensive adoption of techniques based on various forms of machine learning to increase and optimize the performance of WSNs. However, learning techniques can suffer from high computational costs as nodes drain a considerable percentage of their energy budget to run sophisticated software procedures, predict accurate information and determine optimal decision. This thesis addresses also the problem of local computational requirements of learning-based data forwarding strategies by investigating their impact on the performance of the network. Results indicate that local computation can be a major source of energy consumption; it’s impact on network performance should not be neglected

    Special issue on green radio

    Get PDF

    Wake-up radio-based data forwarding for green wireless networks

    Get PDF
    This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Greening and Optimizing Energy Consumption of Sensor Nodes in the Internet of Things through Energy Harvesting: Challenges and Approaches

    Get PDF
    This paper presents a survey of current energy efficient technologies that could drive the IoT revolution while examining critical areas for energy improvements in IoT sensor nodes. The paper reviews improvements in emerging energy techniques which promise to revolutionize the IoT landscape. Moreover, the current work also studies the sources of energy consumption by the IoT sensor nodes in a network and the metrics adopted by various researchers in optimizing the energy consumption of these nodes. Increasingly, researchers are exploring better ways of sourcing sufficient energy along with optimizing the energy consumption of IoT sensor nodes and making these energy sources green. Energy harvesting is the basis of this new energy source. The harvested energy could serve both as the principal and alternative energy source of power and thus increase the energy constancy of the IoT systems by providing a green, sufficient and optimal power source among IoT devices. Communication of IoT nodes in a heterogeneous IoT network consumes a lot of energy and the energy level in the nodes depletes with time. There is the need to optimize the energy consumption of such nodes and the current study discusses this as well

    Optimization and Learning in Energy Efficient Cognitive Radio System

    Get PDF
    Energy efficiency and spectrum efficiency are two biggest concerns for wireless communication. The constrained power supply is always a bottleneck to the modern mobility communication system. Meanwhile, spectrum resource is extremely limited but seriously underutilized. Cognitive radio (CR) as a promising approach could alleviate the spectrum underutilization and increase the quality of service. In contrast to traditional wireless communication systems, a distinguishing feature of cognitive radio systems is that the cognitive radios, which are typically equipped with powerful computation machinery, are capable of sensing the spectrum environment and making intelligent decisions. Moreover, the cognitive radio systems differ from traditional wireless systems that they can adapt their operating parameters, i.e. transmission power, channel, modulation according to the surrounding radio environment to explore the opportunity. In this dissertation, the study is focused on the optimization and learning of energy efficiency in the cognitive radio system, which can be considered to better utilize both the energy and spectrum resources. Firstly, drowsy transmission, which produces optimized idle period patterns and selects the best sleep mode for each idle period between two packet transmissions through joint power management and transmission power control/rate selection, is introduced to cognitive radio transmitter. Both the optimal solution by dynamic programming and flexible solution by reinforcement learning are provided. Secondly, when cognitive radio system is benefited from the theoretically infinite but unsteady harvested energy, an innovative and flexible control framework mainly based on model predictive control is designed. The solution to combat the problems, such as the inaccurate model and myopic control policy introduced by MPC, is given. Last, after study the optimization problem for point-to-point communication, multi-objective reinforcement learning is applied to the cognitive radio network, an adaptable routing algorithm is proposed and implemented. Epidemic propagation is studied to further understand the learning process in the cognitive radio network
    corecore