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Abstract

Energy efficiency and spectrum efficiency are two biggest concerns for wireless

communication. The constrained power supply is always a bottleneck to the modern

mobility communication system. Meanwhile, spectrum resource is extremely limited

but seriously underutilized.

Cognitive radio (CR) as a promising approach could alleviate the spectrum

underutilization and increase the quality of service. In contrast to traditional

wireless communication systems, a distinguishing feature of cognitive radio systems

is that the cognitive radios, which are typically equipped with powerful computation

machinery, are capable of sensing the spectrum environment and making intelligent

decisions. Moreover, the cognitive radio systems differ from traditional wireless

systems that they can adapt their operating parameters, i.e. transmission power,

channel, modulation according to the surrounding radio environment to explore the

opportunity.

In this dissertation, the study is focused on the optimization and learning of energy

efficiency in the cognitive radio system, which can be considered to better utilize both

the energy and spectrum resources. Firstly, drowsy transmission, which produces

optimized idle period patterns and selects the best sleep mode for each idle period

between two packet transmissions through joint power management and transmission

power control/rate selection, is introduced to cognitive radio transmitter. Both the

optimal solution by dynamic programming and flexible solution by reinforcement

learning are provided. Secondly, when cognitive radio system is benefited from

vi



the theoretically infinite but unsteady harvested energy, an innovative and flexible

control framework mainly based on model predictive control is designed. The solution

to combat the problems, such as the inaccurate model and myopic control policy

introduced by MPC, is given. Last, after study the optimization problem for point-

to-point communication, multi-objective reinforcement learning is applied to the

cognitive radio network, an adaptable routing algorithm is proposed and implemented.

Epidemic propagation is studied to further understand the learning process in the

cognitive radio network.
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Chapter 1

Introduction

1.1 Cognitive Radio

In the last decade, opportunistic spectrum access (OSA), also known as cognitive

radio (CR) Mitola III (1999), a promising approach to alleviate the spectrum

underutilization and increase the quality of service, has attracted significant studies.

In cognitive radio networks, every secondary user (without license) senses the licensed

channel to explore the opportunity. If the channel is occupied by primary users having

licenses, the unlicensed user cannot access the channel.

An intuitive illustration of cognitive radio system is shown in Fig. 1.1. The TV

users and cellular users are primary users and they always have the authority to use

the spectrum. When PUs are not occupying the licensed channels, secondary users

(the cognitive systems) have the ability to sense and analyze the radio environment,

thus make the optimal strategy to utilize the spectrum opportunities. The cognitive

radio systems adjust their operating parameters based on the optimal strategy. And

this is called a cognitive cycle.

In contrast to traditional wireless communication systems, a distinguishing feature

of cognitive radio systems is that the cognitive radios, which are typically equipped
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Figure 1.1: Illustration of Cognitive Radio System

with powerful computation machinery, are capable of sensing the spectrum environ-

ment and making intelligent decisions. Moreover, the cognitive radio systems differ

from traditional wireless systems that they can adapt their operating parameters,

i.e. transmission power, channel, modulation according to the surrounding radio

environment. Recently Federal Communications Commission (FCC)’s opened the

TV band for unlicensed access which greatly activates various aspects of cognitive

radio.

1.2 Motivations

Wireless transmission on mobile systems is drastically more power-hungry than

reception, often requiring multiple times more energy per bit. As a result, much of the

wireless energy optimization focuses on transmission power, mainly through physical

layer mechanisms such as power control and rate selection, which set the transmission
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signal power and choose the modulation method, respectively. Physical layer

decisions, such as power control and rate selection, essentially determine the pattern

of such idle periods, given the traffic from the upper layers. Consequently, they

significantly impact the energy-saving opportunities in the idle periods through power

management. This motivates us to jointly optimize idle time power management

and transmission time power control/rate selection, subject to traffic and channel

dynamics. The optimization essentially produces optimized idle period patterns and

selects the best sleep mode for each idle period between two packet transmissions.

We call it drowsy transmission because the wireless interface enters sleep modes even

during active transmission.

Cognitive radio system also suffers to the limited power supply even severely

since the spectrum sensing consumes energy Zheng et al. (2010). It is important

to incorporate the energy cost of spectrum sensing when optimizing the energy

consumption of the cognitive radio system. Xu and Liu (2008) is the first study

to consider the channel sensing cost in CR and to derive a theoretical optimal sensing

and transmitting strategy. However, the hardware overhead, i.e. the energy consumed

by hardware like linear amplifier and mixer, is not considered in Xu and Liu (2008).

Since the hardware overhead usually consumes a significant portion of the energy

in short-range communications, e.g. sensor networks and WiFi, the transmission

strategy will be considerably suboptimal when the hardware energy consumption is

not considered.

Since wireless systems are commonly bound to the limitation of their power

supplies such as the battery capacities. In some specific wireless devices, e.g., wireless

sensors, it could be expensive to replace or recharge the batteries. Even worse, it

may be impossible to do so once the wireless sensors are deployed. For many years,

researchers have been studying how to increase the capacity of the battery or optimize

the power consumption of the wireless devices. More recently, an alternative technique

called energy harvesting has been introduced to alleviate the bottleneck of the power

supplies Kansal et al. (2007). As shown in Fig. 1.2, in an energy harvesting wireless
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Figure 1.2: Energy harvesting wireless system

system, the free energy drawn from the environment, such as vibration, wind, heat

or light by the energy harvesting devices (Lallart et al., 2010; Meehan et al., 2011;

Dayal et al., 2010; Hudak and Amatucci, 2008; Ramadass and Chandrakasan, 2011;

Tan et al., 2011; Bouendeu et al., 2011), could be utilized to charge the super capacity

or battery in the system. Hence, the power supply for the wireless system could be

considered infinite.

As point-to-point communications in cognitive radio systems are maturing, more

studies are pointed to networking using cognitive radio links. The networking issues

in different layers have been studied for cognitive radio networks (CRN), e.g., the

scheduling algorithms in MAC layer (Hamdaoui and Shin, 2008; Su and Zhang, 2008),

routing algorithms in network layer (Khalife et al., 2008; Ma et al., 2008) and TCP

algorithm in transport layer Chowdhury et al. (2009). It can be expected more rapid

progress in CRN in the near future.
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1.3 Contributions

Energy and spectrum are two fundamental resources for wireless communication.

Unfortunately, they are always scarce. The dissertation work presents a set of creative

solutions to the optimization and learning of energy efficient cognitive radio system

which can be considered to better utilize the energy and spectrum resources.

Firstly, drowsy transmission, which produces optimized idle period patterns and

selects the best sleep mode for each idle period between two packet transmissions

through joint power management and transmission power control/rate selection, is

introduced to cognitive radio transmitter. Both the optimal solution by dynamic

programming and flexible solution by reinforcement learning are provided. The

performance bound and performance gain are analyzed. The challenge from curse

of dimensions is addressed.

Secondly, when cognitive radio system is benefited from the infinite but unsteady

power supply, we propose an innovative and flexible control framework based on

model predictive control. We also give a solution to combat the problems, such as

the inaccurate model and myopic control policy, introduced by MPC.

Last, after study the optimization problem for point-to-point communication,

we apply multi-objective reinforcement learning to the cognitive radio network, an

adaptable routing algorithm is proposed and implemented. Epidemic propagation is

studied to further understand the learning process in the cognitive radio network.

1.4 Dissertation Outline

The dissertation is organized as follows: Chapter 2 gives a literature survey on

state-of-art approaches related to power control and management, energy harvesting

transmission and routing design for cognitive radio system. Chapter 3 introduces

the energy efficient transmitter design of a cognitive radio system. Both DP based

and Q-learning based drowsy transmission optimization are discussed and analyzed.

5



Chapter 4 provides a MDP control framework for energy harvesting cognitive radio

transmission. The stability problem is described and safety-stock is discussed.

Chapter 6 proposes a multi-objective learning based routing algorithm in cognitive

radio network. The convergence is studied using epidemic model. Finally, the

dissertation is concluded with accomplished and future work in Chapter 6.
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Chapter 2

Related Work

2.1 Energy Efficient Design of Wireless System

Limited battery capacity and heat dissipation capability have made energy efficiency

a critical concern to the design of modern mobile systems. Wireless interfaces

are among the largest power consumers on mobile systems Rahmati and Zhong

(2007). Numerous techniques have been investigated to improve the energy efficiency

of various layers of wireless communication systems. Most physical (PHY) layer

solutions focus on reducing the energy consumption for transmission by using transmit

power control, rate selection or both Qiao et al. (2003). These solutions either

completely ignore the energy cost in idle time or assume fixed power consumption,

e.g. see (Qiao et al., 2003; Uysal-Biyikoglu and El Gamal, 2004; Cui et al., 2004,

2005). As have been shown recently Liu and Zhong (2008), wireless interfaces can

spend a very high percentage of time and energy in short idle periods even during

active transmission time. Such short idle periods, as below tens of milliseconds, are

out of the reach of conventional power-saving mechanisms provided by higher layers

of the protocol stack, such as IEEE 802.11 MAC Power-Saving Mode (PSM), other

proposed power-saving protocol, e.g. Kravets and Krishnan (1998), and application-

specific solutions, e.g. (Simunic et al., 2000; Chandra and Vahdat, 2002).
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In the past years, tons of studies have been conducted on the power awareness

control or management, focused on different layer or even a cross-layer design.

Link Layer

Sankarasubramaniam et al. (2003) addresses the question of optimal packet size for

data communication in energy constrained WSNs. The optimal fixed packet size

is selected for a set of radio and channel parameters by maximizing the energy

efficiency metric. And the effect of error control on packet size optimization and

energy efficiency is examined.

Soni and Chockalingam (2002) analyzes the throughput and energy efficiency per-

formance of UDP using linear, binary exponential and geometric backoff algorithms

at the link layer on point-to-point wireless fading links. And the multipath fading

channel is modeled as a first-order Markov chain.

Cavalcanti et al. (2007) analyzes the energy efficiency and QoS performance of

802.11e for low-rate applications, compared to 802.15.4 under varying interference

and traffic conditions. In some specific scenarios, 802.11e can achieve higher energy

efficiency and QoS.

Chan et al. (2004) investigates energy efficiency, throughput and packet delay

for both non-persistent and p-persistent CSMA. It’s shown that non-persistent

CSMA has a markedly higher energy efficiency than p-persistent CSMA. When

non-persistent CSMA is optimized for energy efficiency, throughput and delay are

impacted negatively, whereas p-persistent CSMA can effectively optimize all three.

Choi and Park (2006) analyzes the energy efficiency of block ack mechanism and

MIMO transceiver by assuming the knowledge of the power information of receiver

side and channel path loss value. And the result shows that higher energy efficiency

is achieved at lower number of antennas, higher modulation, larger data payload size

and burst transmission.
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An optimal frame size predictor based on Kalman filter is proposed by Ci et al.

(2004). It can largely reduce the average number of transmissions thus improve the

energy efficiency and keep the same good throughput performance.

Mouzehkesh et al. (2008) improves MS-MAC, a mobility adaptive MAC protocol in

WSN. The dynamic approach is used to increase the energy efficiency by preventing

the nodes getting unnecessarily involved inside the active zones, which is base on

computing the distance of the border node from the border region.

Tavli and Heinzelman (2004) proposes a multihop time reservation using adaptive

control for energy efficiency (MH-TRACE). A novel clustering algorithm that

dynamically organizes the network into two-hop clusters is introduced. The clusters

are just for coordinating channel access and minimizing interference, and ordinary

nodes are not static members of any cluster.

Wang et al. (2005) presents the analysis of the energy efficiency in 802.11

Distributed Coordinated Function (DCF) and compare the impacts of various

contention windows and packet sizes. It is shown that under error-prone environments

optimal packet size can improve more on the energy efficiency than optimal contention

window and combination of them can achieve the maximum optimization.

Zhang et al. (2008) studies the effect of fading channel for intra-cluster data

transmission in cluster-based WSNs that employ TDMA based channel access

protocols. An efficient MAC layer algorithm is proposed. The packet error rate and

energy efficiency can be greatly improved by restraining a node from transmitting

data in its assigned time slot when its channel is in deep fading.

Network Layer

Alippi and Vanini (2006) considers a static/semi-static medium-size network, the

nodes periodically acquire and process sensory data and outputs are conveyed to the

central unit. The proposed routing algorithm uses a global power-aware strategy and

utilizes application-based and environment-based optimization.

9



Bernardos et al. (2006) presents an hybrid (proactive-reactive) algorithm, per-

taining to Zone Routing Protocols. The objective is to keep as small as reasonably

possible the number of transmissions and to avoid redundant message sending, while

locally minimizing the transaction delay.

Dhurandher and Singh (2006) improves clustering algorithm by only finding

the local minima of weights for the clustering process. It takes into account the

transmission power, transmission rate, mobility, battery power and the degree of a

node for clusterhead selection. The performance has been compared to Lowest-ID

algorithm and Weighted Clustering Algorithm (WCA).

Galluccio et al. (2006) argues that it is not always wise to periodically turn off

radio interfaces, which will result in a decrease of the actual node density observed

in the network, if geographical forwarding is applied. And the advantages of using

multiple levels of transmission power depending on the current network conditions

are also investigated.

Huang et al. (2006) analyzes the energy efficiency of three cluster-based routing

protocols, LEACH, PEGASIS and BCDCP with extended conditions of general

complexity of data fusion algorithm, general data compressing ratio, and long

distance.

Jung et al. (2005) applies adaptive load balancing technique to the MANET

routing protocols to get a better performance and energy efficiency. A new energy

efficiency metrics to MANET routing protocol is also proposed in the paper.

The framework, which allows to analyze the relationship between the energy

efficiency of the routing tasks and the extension of the range to the topology knowledge

for each node, is proposed in Melodia et al. (2004). An Integer Linear Programming

Formulation of the optimization problem is given by the paper. And it’s shown that

only a limited local topology knowledge is needed to taking energy efficient routing

decisions.
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Padmanabh and Roy (2006) deals with the limitations of realistic battery model

(Rate Capacity Effect) at network layer in routing protocols itself. Two algorithms

for routing to minimize the Rate Capacity Effect are presented.

A power aware chain (PAC) routing protocol for energy efficient data gathering

is proposed in Pham et al. (2004). The chain is constructed by using a distributed

algorithm based on the minimum cost tree which is calculated using received signal

strength and does not require global knowledge of nodes’ location information.

Rajan (2007) proposes a framework for studying the delay allocation problem in

an ad hoc wireless network. A closed form expression for the total required power

in a network is derived as a function of the delay allocation, and approximation is

exploited to find near optimal schedulers.

Sheltami (2005) introduces a mathematical analysis for power adjustment and uses

the equations in selecting gateways according to two different criteria: the gateway

with the highest energy level and the gateway with the least number of neighbors, in

order to optimize the power consumed by gateways.

Tran-Thanh and Levendovszky (2009) proposes a Rayleigh fading model based

reliability-centric routing algorithm for WSNs. It can be shown that the algorithm

gives the globally optimal solution for the goal of minimizing the overall energy

consumption of packet transfers while the constraint of reliability is satisfied.

Varaprasad (2007) discusses the need of power-aware routing and proposes

a power-aware routing algorithm for MANET using gateway node, in order to

minimize the number of control message packets, energy consumption and increase

the throughput. But this paper doesn’t consider packet loss.

Zhang and Soong (2008) proposes a Channel Aware Geographic-Informed For-

warding (CAGIF) routing algorithm, which chooses the next hop relay node by taking

into consideration the underlying channel conditions and analyzes the achievable

energy efficiency of it. The results show that CAGIF significantly outperforms Pure

Geographic-Informed Forwarding (PGIF).
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Cross Layer

Betz and Poor (2008) discusses the cross-layer design issue of energy efficient

communication using a distributed noncooperative model. In this game, users are

allowed to choose their transmit power and uplink receivers to maximize their utilities.

Ghasemi and Faez (2008) discusses how to design a power aware MAC for

Multihop Wireless Network that uses CDMA at its physical layer. The result

emphasizes that in Multihop Wireless Networks, MAC should be designed by

considering both time and space contentions between links, which in turn, are

provided by adjusting the links attempt rate and power.

Cross-layer design issues for UWB sensor networks are discussed in Karvonen

et al. (2006), taking into account the characteristics of PHY and MAC layers. The

results show that coding, such as BCH and RS can decrease the energy consumption

of UWB sensor networks.

The model of energy consumption by jointly considering the interactions between

IEEE 802.11a PHY and MAC is proposed in Kuo (2007). The effects of different PHY

and MAC layer parameters on energy efficiency of IEEE 802.11a are also investigated.

Masurkar et al. (2008) considers the computation of transmission powers, rates

and link schedule for an energy-constrained wireless network to jointly maximize the

network lifetime.

The advantages of Hybrid-ARQ (HARQ) protocols are studied in Stanojev et al.

(2009) from the point of energy efficiency, considering both the transmission energy

and the energy consumed by the transmitting and receiving electronic circuitry.

It is shown, if the circuitry energy consumption is not negligible, selection of the

transmission energy is not only dictated by the outage constraint, but is also

significantly affected by the need to reduce the number of retransmissions.

Wang et al. (2007) proposes a novel multi-rate oriented approach with MAC and

PHY cross layer scheme to support Distributed Source Coding (DSC) based signal

processing applications, in order to achieve high energy efficiency in WSNs. The

12



scheme controls the optimization of the transmission power based on the desirable

BER and the application’s required data rate.

Xianling et al. (2007) addresses the issue of joint design of power control and

connected dominating set formation for power energy saving in Ad hoc wireless

network. An energy efficient cross layer broadcast (CLBA) algorithm is proposed

and the performance, compared with flooding and TDP algorithms, is good in terms

of reachability, average broadcast latency and energy efficiency.

MAC protocols are critical to energy efficiency. Unlike other MAC protocols

which are focused on wake-up schemes and listen/sleep schedule allocation, Yu (2008)

proposes an approach in MAC protocols to reduce the processing time spending on

data moving with cross-layer design. The end-to-end delay can be reduced with

dramatically decrease of nodal processing time.

Zhong et al. (2008) proposes a novel cross layer power control game algorithm

based on Neural Fuzzy Connection Admission Controller (NFCAC) to effectively

utilize location marking information and address the performance issues.

Other

The loss in bandwidth efficiency and gain in energy efficiency are investigated in Bae

and Stark (2007). Common rate schemes and common power schemes are considered.

It’s shown that for low SNR regime, the latter schemes perform better, and for high

regime, the former schemes are superior.

Chen et al. (2009) investigates how the network topology would affect the

performance and energy efficiency in bandwidth-constrained wireless sensor networks

when dealing with source extraction. Three topologies are considered, cluster-based

network, network with a fusion center and concatenated sensor network.

Chen et al. (2008) proposes a WiFi-based pervasive device and computing

framework. The hardware is based on Loongson SOC, and two power efficient killer

applications, location estimation and video codec, for this device are discussed.
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A mathematical model (MNL model) that maximizes the network lifetime is

carried out by El-Najjar et al. (2008). It works for WiMax/802.16 mesh networks

based on an interference and hidden terminal aware (IH-aware) constraint in order

to support the centralized mesh scheduling. Results show that power aware routing

and a convenient frame size improve the network lifetime.

In Gursoy (2007), the bit energy requirements of training-based transmission over

block Rayleigh fading channels are studied. It is shown that bit energy requirement

grows without bound as the SNR goes to zero, and the minimum bit energy is achieved

at a nonzero SNR value below which one should not operate. The effect of the block

length is also investigated.

He et al. (2008) discusses how cognitive radio can help minimize energy consump-

tion of a wireless mobile communication device. An energy optimization framework

using CR which can dynamically adjust radio parameters, such as PA (power

amplifier) characteristics, is proposed to achieve minimum energy consumption for

the required QoS based on the channel and the radio capabilities.

Politis et al. (2008) proposes an efficient packet scheduling scheme for minimizing

perceived video distortion and power consumption over multipath wireless multimedia

sensor networks by selectively dropping packets prior to transmission in order to

reduce the amount of transmitting data, without increasing significantly the video

distortion in the receiving end, and the study concentrates in H.264/AVC codec.

The tradeoff between energy efficiency and non-cooperative events coverage in a

WSN is studied in Qian et al. (2006). An adaptive timer scheme is proposed in the

paper, and it uses the same principle as the TCP congestion control. The proposed

scheme can estimate the event occurrence and adapt the sleep schedule accordingly.

Singh and Gore (2008) proposes a clustering algorithm for specific area of

deployment for WSN which does cluster management to remove energy consumption

in creating and destroying clusters. The shape of clusters is assumed to be circular

and created clusters are maintained throughout the WSN’s life. In a cluster, the

responsibility of cluster head is rotated from one cluster head to other sensor.
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Tian et al. (2008) discusses different error control schemes using energy efficiency

analysis. It proves that energy efficiency of ARQ techniques is independent of

retransmission attempts and is unchangeable with the number of transmissions (this

paper gets an opposite conclusion to Stanojev et al. (2009) here).

Trailli (2005) investigates the tradeoffs among energy consumption, hop distance

and robustness against fading, for a multihop communication in a WSN, achievable

by a set of coding schemes and relaying schemes with node cooperation. A new metric

named energy consumption rate is derived and different schemes are compared from

the point of view of reliability and energy efficiency.

Yang and Brown (2006) examines the impact of partial channel state information

(PCSIT) on optimum energy allocation and energy efficiency of a wireless communica-

tion system with two delay-constrained cooperating sources and one destination using

the amplify-and-forward protocol. Numerical examples with independent Rayleigh

fading channels show that PCSIT can significantly improve the energy efficiency of

both cooperative and direct transmission.

Yeung and Kwok (2006) studies the power aware wireless data access scheme

as a noncooperative game, wireless data access (WDA) game. In the WDA game,

each client independently determines its request probability, in order to save its own

uplink power consumption. And the game theoretical analysis shows that clients do

not always need to send requests to the server.

Yuen and Sung (2003) investigates the effect of transmit range on energy efficiency

of packet transmissions of both stationary and mobile Ad hoc networks. The results

show that energy efficiency is intimately connected to network connectivity. And the

optimal range is much larger than the critical range as advocated in some literatures.
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2.2 Energy Harvesting Wireless Communication

In Tan et al. (2009), the authors investigate the impact of transmit power control on

the availability and data delivery ratio of wireless sensor networks powered by energy

harvesting.

Vijayaraghavan and Rajamani (2008) and Vijayaraghavan and Rajamani (2010)

study the wireless sensor system using energy harvested from short duration

vibrations; meanwhile, several control algorithms and hardware design are proposed.

Cooperative protocol and transmission strategy can be found in papers Tacca et al.

(2007) and Medepally and Mehta (2010). The use of cooperative communication in

energy harvesting wireless network is promised to substantially improve the network

performance.

Game theory is also applied to find the optimal sleep and wake-up strategy in

Niyato et al. (2007).

Multiple transmission modes are considered and the energy efficient transmission

problem is formulated as a Markov Decision Process in Seyedi and Sikdar (2010).

The tradeoff between the energy consumption and packet error probability is

studied. The theoretical upper lower bounds are derived while the transition overhead

between different modes is not considered in the paper. The distributed solution for

the delay maintenance in energy harvesting sensor networks is introduced in Gu and

He (2010).

A more elaborate research is done by paper Sharma et al. (2010), both the

optimal and sub-optimal transmission policies for the throughput and mean delay

are obtained.

16



2.3 Routine Protocol Design in Cognitive Radio

Networks

In the routing problem of cognitive radio network, many existing papers are focused

on the spectrum aware routing. Some discussed the spectrum selection and cost on

the path thus can lead to an optimal route.

Xin et al. (2005) studied such a problem: given a set of detected spectrum bands

that can be temporarily used by each node in a dynamic spectrum access network, how

to form a topology by selecting spectrum bands for each radio interface of each node.

A novel layered graph to model the temporarily available spectrum bands is proposed

in the paper and the model is used to develop effective and efficient routing and

interface assignment algorithms to form near-optimal topologies for DSA networks.

And this model provides solutions for DSA networks with static link properties. Fixed

channel approach is considered in the paper and the radio interfaces are assumed to

tune in a wide range but operate on a limited and smaller range at a specific time.

Specifically, a radio interface is assumed to operate on only one channel at a specific

time.

Pal (2007) addresses the problem of spectrum-aware data-adaptive routing in

multi-channel, single-radio (MC-SR) multi-hop DSA networks. A data-adaptive

routing scheme is developed, and for a given amount of data, it takes into account

the capacity of the links, the available spectrum, the link disruption probabilities

and the link propagation time between nodes. This routing problem is modeled as

a combinatorial optimization task. In the paper, a stationary network is considered.

Each node is assumed to be reliable, only equipped with one radio and has access to

all channels in the network. On a particular link at any time slot, each channel has a

0-1 probability distribution and 0-1 distribution for each channel on a link is assumed

to be the same, and may be different for different links in the DSA network.

Pefkianakis et al. (2008) proposed SAMER (spectrum aware mesh routing), a

routing solution for cognitive radio mesh networks. SAMER opportunistically routes
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traffic across paths with higher spectrum availability and quality via a new routing

metric. It balances between long-term route stability and short-term opportunistic

performance. In SAMER, routes with highest spectrum availability are selected as

candidates, and long-term routing metric is computed based on spectrum availability.

It tries to balance between long-term route stability and short-term route performance

via building a runtime forwarding route mesh. In the paper, each node is assumed

to individually construct a spectrum allocation matrix, which captures both the

operations of the PUs and the SUs activities. Spectrum block that will be used

for packet transmission is decided locally according to: 1) available spectrum, 2)

instantaneous contention intensity, and 3) user traffic demand, the routing protocol

cannot pre-specify the interfaces that will be used across the path from source to

destination node.

Cheng et al. (2007) proposed a joint approach of on-demand routing and frequency

band selection. A novel scheduling scheme for intersecting nodes is proposed

considering the effect from other existing multi-frequency flows. The aim of the

paper is to select appropriate frequency bands for nodes along the path with minimum

cumulative delay, considering the switching delay and backoff delay.

Pan et al. (2008) proposed a novel cost criterion for opportunistic multi-hop

routing in CR networks. It leverages the unlicensed CR links to prioritize the

candidate nodes and optimally selecting the forwarder. A CR based OR (CROR)

cost criterion is proposed. A multi-hop CR network with only one PU and N CR

nodes arbitrarily located on a plane is considered in the paper. The PU activities are

modeled as exponentially distributed inter-arrivals.

Wu and Tsang (2009) studied the dynamic rate allocation, routing and spectrum

sharing for multi-hop cognitive radio networks (CRNs). The cross layer optimization

problem is formulated as a sequential decision process which aims to minimize the

average total power consumption in each scheduling cycle under the constraint that

all cognitive radio users’ traffic demands are guaranteed. DP is used to solve the
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problem and an optimal rate allocation, routing and spectrum sharing policy for

CRNs is derived.

Xia et al. (2009) introduced two adaptive reinforcement learning based spectrum-

aware routing protocols, which applied Q-Learning and Dual Reinforcement Learning

respectively. The cognitive nodes store a table of Q values that estimate the numbers

of available channels on the routes and update them while routing. Thus routes have

more available channels can be learned. The network environment can be explored

and the Q values can be updated continually based on the local information (from

the cognitive node’s neighbors). A stationary multi-hop network is assumed in the

paper.

Ma et al. (2008) proposed a spectrum aware on-demand routing which doesn’t

base on control channel. A channel assignment algorithm aimed at improving link

utilization is derived from delay-analysis. The overhead and gain by switching are

balanced in the algorithm. This paper is somewhat similar to Cheng et al. (2007).

Li et al. (2009) studied how to select a path with the minimum cost in terms of

expected end-to-end delay (EED) in a multi-radio wireless mesh networks. It may be

possible to apply this into a CRN.

Liang et al. (2008) present a multi-agent reinforcement learning based routing

protocol with QoS support (MRL-QRP) for wireless sensor networks. A distributed

value function - distributed reinforcement learning algorithm (DVF-DRL) is applied.
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Chapter 3

Energy Efficient Transmitter

Design

3.1 Backgrounds and Motivations

In the dissertation work, we focused on the transmitter side of the mobile system,

because wireless transmission on mobile systems is drastically consumes more power

than reception, often requiring multiple times more energy per bit. As a result,

much of the wireless energy optimization focuses on transmission power, mainly

through physical layer mechanisms such as power control and rate selection, which

set the transmission signal power and choose the modulation method, respectively.

Physical layer decisions, such as power control and rate selection, essentially

determine the pattern of such idle periods, given the traffic from the upper layers.

Consequently, they significantly impact the energy-saving opportunities in the idle

periods through power management. This motivates us to jointly optimize idle time

power management and transmission time power control/rate selection, subject to

traffic and channel dynamics. The optimization essentially produces optimized idle

period patterns and selects the best sleep mode for each idle period between two
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Figure 3.1: Illustration of impacts of different idle patterns.

packet transmissions as shown in Fig. 3.1. We call it drowsy transmission because

the wireless interface enters sleep modes even during active transmission.

3.2 System Model of Coginitive Radio Transmit-

ter

In our previous study Li et al. (2009), we introduced a drowsy transmission scheme

into the energy optimization of traditional wireless transmission. The key idea of

drowsy transmission as shown in Fig. 3.2 is to optimize the transmission power and

rate to create idle patterns for micro power management Liu and Zhong (2008), which

allows the transmitter to have more chance to enter the low power consumption mode,

e.g. the sleep mode, thus achieving a better energy efficiency.

Then we extended drowsy transmission to to the energy efficiency problem in CR

system and applied dynamic programming to derive an optimal solution Zheng and

Li (2010). An intuitive illustration is shown in Fig. 3.3. In the first sensing period,

after transmitting all packets in the buffer, the secondary user will enter sleep mode

to save energy consumption. In the second sensing period, if the channel is occupied

by the primary user, we know that it would be a good choice to stay in sleep mode

for the secondary user even if there are incoming packets. Meanwhile, in order to

further improve the energy efficiency, we can selectively omit the spectrum sensing
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Figure 3.2: Drowsy transmission

Figure 3.3: An illustration of drowsy transmission in CR system
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Figure 3.4: Mode transition diagram of CR transmitter

since it also consumes energy. For example, at the beginning of the third sensing

period, if the transmitter has nothing to transmit, it can decide whether to perform

the periodic spectrum sensing task to reduce the overhead of spectrum sensing.

Typically, we assume that the wireless transmitter can be in one of three modes,

namely transmit, idle and sleep, denoted by T , I and
{
Sk
}
k
(there exist k sub sleep

modes). The corresponding hardware power overhead consumption, excluding the

radio emission power, is denoted by Pm for mode m. Generally, we have PT > PI >

PSk , which implies that the transmitter should stay in the sleep mode as long/often

as possible to achieve the energy efficiency. When the transmitter is in the sleep mode

and needs to transmit packet, it should return to the idle mode first. We also assume

that the transition across different modes may not be instantaneous and denote by

TM1→M2 the time overhead for transiting from mode M1 to mode M2.

In addition to the above three modes, there exists two modes, namely Sensor On

and Sensor Off, for the spectrum sensor of secondary user. Obviously, the mode of

Sensor Off consumes less power than the mode of Sensor On. Since the spectrum

sensor is an independent component, the mode of the spectrum sensor is parallel

to the mode of the transmitter. Since we assume that periodic spectrum sensing is

performed, the system will enter the sense mode at the beginning of every sensing

period. The power overhead and time overhead by spectrum sensing are denoted by
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Figure 3.5: Markov Process of channel availability.

PSense and TSense. While spectrum sensing is being performed, the transmitter can

only stay in the idle mode or the sleep mode, and cannot carry out any transmission

task. The mode transition diagram is illustrated in Fig. 3.4.

The channel availability, which depends on the traffic pattern of PU, can be

modeled by a Markov Process. It is illustrated in Fig. 3.5, where P00,P01,P10 and P11

denote the state transition probabilities. (here 1 means that channel is occupied by

primary user and 0 means that channel is idle)

Thus the probability that channel is idle and can be used by the SU is given by

P0 = P10/(P10 + P01). (3.1)

The power consumption and mode transition time for different transmitter modes

are provided in Table 3.1, which are obtained from the measurement of a typical

IEEE 802.11b board Li et al. (2009) having 4 sleeping modes. Four options (30mW,

60mW, 70mW, 190mW) and five options (1Mbps, 2Mbps, 4Mbps, 6Mbps, 8Mbps)

are used for the transmit power and transmission rate, respectively.

We assume that the bandwidth used for data transmission is 4MHz and the

corresponding noise PSD is -174dBm/Hz. The random process of channel gain is

generated from Jakes fading model Jakes (1974) when considering a 2GHz carrier

frequency. The details can be found in the 3GPP2 performance evaluation standard
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Table 3.1: Power consumption and transition time for different modes

Power Consumption Transition Time
Transmit 297mW 0
Idle 297 mW 0
Sleep 1 190wW 1us
Sleep 2 70wW 25us
Sleep 3 60wW 2ms
Sleep 4 30wW 5ms

3GPP2 (2004). Both path loss and fast fading are considered in the channel gain,

which ranges from -134dB to -124dB and is quantified into 5 levels.

We assume that the packet length L equals 4kb and the maximal buffer size Xmax

is 20 packets. Therefore, there are totally 21 × 6 × 5 = 630 states (recall that there

are totally 6 transmitter modes). We assume that each time slot lasts 1ms. For the

spectrum sensing, we assume the power consumption equals to that of the idle mode

and sensing time Tsense is 1ms.

We also assume that the random process of packet arrival of SU satisfies Poisson

distribution. The average number of arriving packets within a time slot is denoted by

μ. Note that the Poisson assumption makes the system memoryless and facilitates

the application of Markov Decision Process (MDP) to obtain the optimal policy.

The strategy optimization for energy efficiency is essentially a control problem.

In this section, we will present a dynamic programming based solution. It is known

that dynamic programming can be used to compute the optimal policy once a perfect

system model is given. The details of dynamic programming can be found in Bertsekas

(1987).
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3.3 Dynamic Programming Based Drowsy Trans-

mission

The key idea of dynamic programming is the use of cost-to-go function from which

the optimal control policy can be derived. We consider the weighted sum of energy

the consumption and the penalty for buffer overflow as the cost-to-go function, which

is given by

J = (1− α)E

[ ∞∑
n=0

αnE(n) + κI(Xn = Xmax)

]
, (3.2)

where 0 < α < 1 is a discount factor, E(n) stands for the energy consumption

during time slot n, I is a characteristic function which equals 1 when Xn = Xmax and

equals 0 otherwise. κ is the penalty for buffer overflow. Note that it is important

to incorporate the penalty for buffer overflow, which represents the requirement of

traffic throughput. If the penalty of buffer overflow is not considered, the optimal

strategy for saving energy is to stay in sleep mode and transmit nothing.

Based on the cost-to-go function, the optimal policy can be obtained by solving

the following optimization problem:

π∗ = argmin
π∈Ω

Jπ (3.3)

where Ω is the set of all control policies.

For this control problem, the system state includes the following elements:

• Current operational mode Mn, which can be chosen from transmit, idle and

sleep.

• The number of packets in the buffer is denoted by Xn at time slot n.

• Channel condition Dn. Assume that spectrum sensing is performed at time slot

n, thus Dn can be defined as: Dn = 0 if the channel is not occupied by primary
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users, and Dn = 1 if the channel is occupied by primary users. If one spectrum

sensing period takes N time slots, then Dn+1 to Dn+N will assume the same

value as Dn and will be updated until next sensing period.

• Cn, the state of a timer for the periodic spectrum sensing at time slot n. It will

be reset to Cmax = N at the beginning of each sensing period, and decrease to

0 until next sensing period. Once Cn = 0, spectrum sensing will be carried out.

Thus the state space can be denoted by a four-tuple Sn = (Mn, Xn, Dn, Cn).

The actions, denoted by an at time slot n, that the transmitter can take are

determined by the current state Sn. The objective is to obtain the optimal action at

each decision, thus minimizing the expected energy consumption. Now we discuss the

action that can be taken and the computation of cost-to-go functions in the following

situations.

1) When the current mode is transmit and the buffer is empty, the transmitter

should transit from the transmit mode to the idle mode. The energy consumption

and time overhead are ET →I and T → I respectively. Thus the cost-to-go is given

by

J(T , 0, Dn, Cn)

= (1− α)(ET →I + κE[I(Xn+TT →I = Xmax)])

+ αE[J(I, Xn+TT →I , Dn+TT →I , Cn+TT →I)]. (3.4)

2) When the current mode is transmit, the buffer is non-empty, and the channel

is occupied by primary users, i.e. Dn = 1, the transmitter cannot perform the

transmission task, and should transit from the transmit mode to the idle mode.
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Therefore, the corresponding cost-to-go function is given by

J(T , Xn, 1, Cn)

= (1− α)(ET →I + κE[I(Xn+TT →I = Xmax)])

+ αE[J(I, Xn+TT →I , 1, Cn+TT →I)]. (3.5)

3) When the current mode is transmit, the buffer is non-empty, and the channel is

available, i.e. Dn = 0, the transmitter should try to transmit the packet. The energy

consumption and time overhead for transmitting one packet are denoted by ET and

TT . Therefore, the cost-to-go function is given by

J(T , Xn, 0, Cn)

= (1− α)(ET + κE[I(Xn+TT − 1 = Xmax)])

+ αE[J(T , Xn+TT − 1, 0, Cn+TT )]. (3.6)

4) When the current mode is idle and the buffer is empty, the transmitter needs

to determine whether stay in the idle mode or transit to one of the sleep modes. If

the transmitter decides to remain in the idle mode, then the energy consumption and

time overhead are EI and TI . If the transmitter decides to transit to sleep mode k,

then the energy consumption and time overhead will become EI→Sk and TI→Sk . The

corresponding cost-to-go function is given by

J(I, 0, Dn, Cn)

= min{(1− α)(EI + κE[I(Xn+TI = Xmax)])

+ αE[J(I, Xn+TI , Dn+TI , Cn+TI)],

min
k

{(1− α)(EI→Sk + κE[I(Xn+TI→Sk
= Xmax)])

+ αE[J(Sk, Xn+TI→Sk
, Dn+TI→Sk

, Cn+TI→Sk
)]}}. (3.7)
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5) When the current mode is idle and the buffer is non-empty, but the channel is

occupied by primary user, the transmitter can transmit nothing, and therefore need

to decide whether to remain in idle mode or transit to sleep mode. The cost-to-go

function is given by

J(I, Xn, 1, Cn)

= min{(1− α)(EI + κE[I(Xn+TI = Xmax)])

+ αE[J(I, Xn+TI , 1, Cn+TI)],

min
k

{(1− α)(EI→Sk + κE[I(Xn+TI→Sk
= Xmax)])

+ αE[J(Sk, Xn+TI→Sk
, 1, Cn+TI→Sk

)]}}. (3.8)

6) When the current mode is idle, the buffer is non-empty, and the channel

is available, the transmitter should return to the transmit mode. The energy

consumption and time overhead of this transition are denoted by EI→T and TI→T .

Then, the cost-to-go function is given by

J(I, Xn, 0, Cn)

= (1− α)(EI→T + κE[I(Xn+TI→T = Xmax)])

+ αE[J(T , Xn+TI→T , 0, Cn+TI→T )]. (3.9)

7) When the transmitter is in the sleep mode, whenever the buffer is empty or not,

the transmitter should always decide whether to stay in the sleep mode or transit to

the idle mode. If the decision is to stay in sleep mode, the energy consumption and

time overhead could be denoted by ESk and TSk . If the decision is to transit to idle

mode, the energy consumption and time overhead of the transition are ESk→I and
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TSk→I . The corresponding cost-to-go function is given by

J(Sk, Xn, Dn, Cn)

= min{(1− α)(ESk + κE[I(Xn+TSk
= Xmax)])

+ αE[J(Sk, Xn+TSk
, Dn+TSk

, Cn+TSk
)],

(1− α)(ESk→I + κE[I(Xn+TSk→I
= Xmax)])

+ αE[J(I, Xn+TSk→I
, Dn+TSk→I

, Cn+TSk→I
)]}. (3.10)

8) At the beginning of each sensing period, where Cn = 0, spectrum sensing should

be performed. The time required to do spectrum sensing is denoted by Tsense. The

energy consumption is Esense. Note that Esense may be different when the transmitter

is in transmit mode, idle mode or sleep mode. After sensing, Cn will be reset to Cmax.

The cost-to-go function is then given by

J(Mn, Xn, Dn, 0)

= (1− α)(Esense + κE[I(Xn+Tsense = Xmax)])

+ αE[J(Mn, Xn+Tsense , Dn+Tsense , Cmax)] (3.11)

In order to obtain better energy efficiency, there exists a special situation. If

the transmitter is in sleep mode and the buffer is empty, the transmitter needs to

determine whether to perform periodic spectrum sensing or not. The decisions made

at this situation and situation 7 will contribute the most in drowsy transmission.

Based on the analysis of the cost-to-go functions in the above situations, we will use

the value iteration Bertsekas (1987) to obtain the optimal strategy.

The performances of the optimal policy based on drowsy transmission are

compared to two alternative baselines.

1. In the first baseline, if the transmitter is in the sleep mode and the buffer is

empty, periodic spectrum sensing will always be performed. In our drowsy
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Figure 3.6: Percentages of time in different modes and transitions between modes

transmission, the spectrum sensor may not perform a spectrum sensing in this

situation.

2. In the second baseline, if the transmitter is in a sleep mode and there are

incoming packets, the transmitter will always wake up. In a sharp contrast,

in the drowsy transmission, the transmitter needs to determine whether it is a

good choice to wake up.

The proposed drowsy transmission based solution performs better than the two

baselines, particularly when the traffic load is small. Note that, when the traffic load

is relatively large, there is no need to make a decision whether perform sensing or not

in the sleep mode since the performance gain obtained from this decision is negligible.

Performance of Packet Delay

Fig. 3.8 shows the cumulative probability function of the packet delays. Recall that

in baseline 2, the transmitter always wake up from the sleep mode when there are

31



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

average SU traffic (Mbps)

re
la

tiv
e 

en
er

gy
 c

on
su

m
pt

io
n

 

 

Drowsy
Baseline 1
Baseline 2
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incoming packets, while drowsy transmission and baseline 1 need to make a decision

and tend to stay in the sleep mode to save energy. When the traffic load is small,

i.e. 0.4Mbps, baseline 2 can achieve smaller packet delays, and drowsy transmission

will lead to a larger but still acceptable packet delay. If the traffic load keeps on

increasing, all of these three transmission policies will achieve almost the same packet

delays.

Convergence of Drowsy Algorithm

The number of iterations that are required for the drowsy policy to converge under

various traffic loads is shown in Fig. 3.9. It can be observed that the function is

concave. One intuitive explanation is that, when the traffic load is relatively small

or large, the transmitter stays in the sleep mode or transmit mode most of the time,

and the iterative algorithm can easily achieve the optimal points, which are staying
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in the sleep mode or staying in the idle respectively. If the traffic load falls in the

median level, it will take more iterations for the algorithm to find the optimal point.

3.4 Q-Learning Based Drowsy Transmission

The optimal policy can be derived by dynamic programming once the system is

perfectly known. If we do not have the complete knowledge of the environment,

e.g. there is no a priori information of the channel availability, then the dynamic

programming based approach does not work. In the dissertation, we propose to

utilize reinforcement learning Pandana and Liu (2004), say, Q-learning (Sutton and

Barto, 1998; Watkins, 1989) to solve the problem.

For learning the optimal transmission strategy that minimizes the cost function,

we set a Q-value for each state-action pair (S, a). Essentially, the Q-value means the

expected cost when taking action a under state S.

Obviously, given a state, the action having a smaller Q-value should be used since

the purpose of optimization is to minimize the cost. However, for exploring all possible

state-action pairs, we take actions not having the smallest Q-value with exploration

probability Pε. Therefore, when the current state is S, there are two or more possible

actions, the probability of choosing action a∗ is given by

P (choose action a∗)

=

⎧⎨
⎩ 1− Pε, if a∗ = argmina Q(S, a)

Pε

|A(S)|−1
, if a∗ �= argmina Q(S, a)

, (3.12)

where |A(S)| means the number of possible actions for state S. This is illustrated

in Fig. 3.10. For example, when the current state is state 3, the transmitter selects

action 1 with large probability (e.g. 0.95) and actions 2 and 3 with probabilities 0.025

and 0.025.
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Figure 3.10: Illustration of state and action.

For learning the optimal transmission strategy that minimizes the cost-to-go

function, we set a Q-value for each state-action pair (S, a). Here we use the same

state space and action space as defined in the DP approach. The state S is presented

by the four-tuple (M,X,D,C), where M is the operational mode, X is the buffer

status, D is the channel condition, and C is the countdown for periodic spectrum

sensing respectively. The feasible action set will depend on the current state, i.e.,

when the transmitter is in idle mode, with non-empty buffer and available channel,

the only action for the transmitter is to return to the transit mode. If the buffer is

empty, then the feasible action set will be {stay in the idle mode, transit to k-th sleep

mode}.
Essentially, the Q-value means the expected reward, which is actually a cost in

our case, when taking action a under state S at the n-th episode. Q-value can be

updated in a recursive way

Q(Sn, an) ← (1− αn)Q(Sn, an)

+αn[En+1 + γmin
a

Q(Sn+1, a)], (3.13)

where En+1 is the energy consumption in next decision period, αn is the learning

rate, and 0 < γ < 1 is a discount factor. An illustration is shown in Fig. 3.11.

Obviously, given a state, the action having a smaller Q-value should be used since

the purpose of the optimization is to minimize the cost. However, for exploring all
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Figure 3.11: Typical learning procedure

possible state-action pairs, we will take actions not having the smallest Q-value with

probability ε.

Comparison between Q-learning and DP

The comparison of energy consumption of Q-learning and DP is shown in Fig. 3.12.

The traffic load of the secondary user is assumed to be 0.04Mbps. In Q-learning,

the learning rate α and exploration rate ε are set to 0.05 and 0.1 respectively. Since

the policy obtained from DP does not change with time, the corresponding energy

consumption is almost constant. We observe that Q-learning converges close to the

optimal transmission policy and then fluctuates around it.

We set α = 0.05 and β = 0.9. Four different traffic loads, i.e. 0.2Mbps,

0.4Mbps, 2Mbps and 4Mbps, are tested. The initial strategy is selected randomly.

For comparison, we also computed the optimal transmission strategy using dynamic

programming (DP) (the details can be found in Li et al. (2009)). On assuming

constant environment, the evolution of energy consumption with respected to time is

shown in Fig. 3.13, where the energy consumption is averaged over a short sliding

time window. Since the strategy obtained from DP does not change with time, the

corresponding curves are almost constants. We observe that the Q-learning converges
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Figure 3.12: Comparison between Q-learning and DP

close to the optimal transmission strategy and then fluctuates around it. Since we used

a constant learning factor, the fluctuation always exists. An interesting observation

is that the learning rate is faster for lower data traffic load. An intuitive explanation

is that the main challenge of learning is to learn how to control the transmitter mode,

particularly whether entering or quitting the sleep mode. When the data traffic load

is lower, there are more opportunities for learning the mode transition since the buffer

becomes empty more frequently. With a larger data traffic load, the transmitter is

busy in delivering packets and is more occupied by the transmit mode, thus obtaining

less chance to learn the mode transition.

The comparison of energy consumption versus different traffic loads between Q-

learning and DP is shown in Fig. 3.14, where the performance of Q-learning is

obtained from a sufficiently long learning duration. Note that the two curves do

not coincide because a constant learning factor is used and the Q-learning does not

necessarily converge to the strategy obtained from DP. We observe that the gap

between the Q-learning and DP is larger when the traffic load is small. Combining
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Figure 3.13: Convergence of Q-learning.

the observation in Fig. 3.13, we can draw the conclusion that, when the traffic load

is small, the Q-learning has a faster learning speed but yields a more sub-optimal

transmission strategy. But we should be aware that when λ is large, the small learning

rate α will lead to a very low convergence rate. So we may need some mechanisms to

adapt the learning rate according to the traffic load. One possible way may be:

1. We can always assume the traffic obeys poisson distribution and periodically

update the approximate value of λ. This is feasible and we do not need a strictly

accurate λ, actually, all we need is the approximate traffic load level.

2. When we find that the traffic load is light, then we use a small enough learning

rate (this can be acquired through antecedent experiments).

3. When we find that the traffic load is heavy, then a relatively large α is chosen, and

during the learning process, α is adaptively decreasing.
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Figure 3.14: Comparison between Q-learning and DP.

Learning with Traffic Load Change

In practical systems, the traffic load is not a constant in time. Therefore, we tested

the capability of tracking the change of traffic load for Q-learning. We assume that

the traffic load is 0.4Mbps and then changes to 2Mbps at a random time. The

corresponding history of energy consumption is shown in Fig. 3.15. We observe that

the Q-learning can track the change and adapt the transmission strategy to the new

traffic load.

State Merge and Split

One of the challenges to reinforcement learning (actually to all MDP problems) is the

curse of dimensions Powell (2007), i.e. the number of states is usually prohibitively

large in many practical problems. For practical systems, there is a pressing need

to reduce the number of states at the cost of reasonably degraded performance. A

typical approach is to approximate value functions using parameterized functions like
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Figure 3.15: Q-learning subject to traffic load change.

linear functions or neural networks. In the dissertation work, we propose an approach

called state merge and split Zheng and Li (2012). it is motivated by the observations

that many state-action pairs are rarely visited and many state-action pairs should

have similar Q-values. For example, when the number of packets in the buffer is

15 and 16, respectively, their Q-values should be close to each other. Therefore, it is

reasonable to merge these two states into one state. We call it composite state and call

the original ones basic states. The states belonging to the same composite state share

the observations and the same Q-value. In contrast to the original Q-learning, the

state merge can accelerate the learning speed since observations are shared and the

redundancy in Q-values is exploited. However, when sufficiently many observations

are received, the merged state may incur performance degradation due to the loss of

granularity. Therefore, we can split the composite state into finer states and continue

the learning procedure, which is called state split.
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Figure 3.16: Illustration of state merge and split.

Representation by Forest

We can represent the state merge and split by the structure of forest. At the initial

stage, states with similar characteristics are merged into multiple root states using

heuristic rules. Learning is carried out for these root states and the state-action pairs

belonging to the same root state share the same Q-value. After sufficient learning,

we split the state into finer states, thus spanning the forest. There are at least two

approaches to decide whether the state needs to be split or not.

• We bookkeep the times of visit to each state. State split is carried out when the

number of visits to the states belonging to the same root state is larger than a

threshold.

• After a time period, the variation of the Q-value of the root state is less than a

threshold.

We repeat the same procedure for all leaf nodes in the forest. When we find that the

Q-values of a state changes radically, perhaps due to environmental change, we merge

it with its sibling nodes, thus dwindling the forest. Such a procedure is illustrated in

Fig. 3.16 (only a tree is shown) and summarized in Procedure 1.

For testing the performance of state merge and split, we merge state-action into

a smaller group. For simplicity, a two-level tree is used for the state merge and split.

In the initialization, 5 packets in the buffer are packed as one, e.g. when there are 3

packets or 4 packets in the buffer, we consider them as one root state. Similarly, 5
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Procedure 1 Procedure of State Merge and Split
1: Merge all basic states into multiple root states, thus initializing the forest.
2: for each time slot do
3: for each leaf node in the forest do
4: If the leaf node is not a basic state and the learning is mature, split it into several

leaf nodes.
5: If the Q-value of the leaf node changes rapidly, merge it with its sibling nodes.
6: end for
7: end for

level channel gains are merged into 3 states: ‘Good’, ‘Normal’ and ‘Bad’. Then, the

number of states is decreased to 5 × 6 × 3 = 90 in the initial stage. In the learning

process, we record the Q-value for 10 updates. Once the variation in this period

is less than the threshold δ = 0.01, we assume the learning is complete and then

split the composite state. A 2Mbps traffic load is tested and the evolution of energy

consumption is shown in Fig. 3.17. We observe that, in contrast to other schemes,

the learning procedure with both state merge and split achieves faster learning rate

and better asymptotic performance, which coincides with the purpose of state merge

and split.

3.5 Performance Evaluation via Extreme Value

Theory

Both the DP based and Q-learning based optimization can be hardly evaluated by

the mathematical analysis. The explicit expression of the performance bound can be

stiff to derive due to the complication of the system model. In the dissertation work,

we propose to use Extreme Value Theory (EVT) to analyze the performance of the

optimization. First, let us simplify the control procedure and power consumption of

the wireless transmitter. Let Xk be the set of all possible state and corresponding

action pair, Ek be the set of all possible power consumption at time slot k. J is the

cumulated power consumption. Given the capacity of the limited power supply CT ,
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Figure 3.17: Performance of state merge and split.

i.e., the capacity of the battery. To get a clear insight on the performance of the

control policy, it is in our interest to find out the probability of battery depletion at

time slot K. Below is the recursion of the control procedure

1. For all x1 ∈ X1

J(x1) = e1 where e1 ∈ E1 (3.14)

2. For 2 ≤ k ≤ K, for all xk ∈ Xk,

J(xk) = min
xk−1

[J(xk−1)] + ek (3.15)

The probability of energy depletion can be formulated as follow

PED = Pr(max
xK

J(xK) > CT ) (3.16)
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The maximization is performed over J(xK) which will provide an approximated lower

bound of the performance.

The occurrence of max function in eqn. 3.16 suggests application of EVT, which

is widely used in finance, earth science and other disciplines. EVT is among the weak

convergence theory and dealing with limiting distributions of extremal events. Let

Mn denotes the maximum of a sequence of i.i.d variables {x1, . . . , xn} and suppose

there exist an > 0, bn ∈ R, n ≥ 1, the Fisher-Tippett theory Embrechts et al. (1997)

shows that

P (Mn ≤ x) = P (x1 ≤ x, . . . , xn ≤ x) = F n(x)

=⇒ P (
Mn − bn

an
≤ x) = F n(anx+ bn) −→ G(x) (3.17)

weakly as n → ∞.

In other words, the normalized distribution of Mn converges weakly to G which

is of the type of one of the following three classes:

1. Fréchet distribution

2. Weibull distribution

3. Gumbel distribution

For t ∈ R, let us denote the greatest integer less than or equal to t by [t]. According

to eqn. 3.17, we can obtain that for any t > 0

F [nt](a[nt]x+ b[nt]) → G(x) (3.18)

and also we have

F [nt](anx+ bn) = (F n(anx+ bn))
[nt]/n → Gt(x) (3.19)
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The convergence to types theorem applies and there exist α(t) > 0, β(t) ∈ R,

t > 0 such that

lim
n→∞

an
a[nt]

= α(t) (3.20)

lim
n→∞

bn − b[nt]
a[nt]

= β(t) (3.21)

And we have

lim
n→∞

F [nt](α(t)x+ β(t))

= lim
n→∞

F [nt](a[nt](α(t)x+ β(t)) + b[nt])

= lim
n→∞

F [nt](a[nt](
an
a[nt]

x+
bn − b[nt]

a[nt]
) + b[nt])

= lim
n→∞

F [nt](anx+ bn) (3.22)

From eqn. 3.22, we can directly obtain that

G(α(t)x+ β(t)) = Gt(x) (3.23)

And from eqn. 3.23, let t > 0, s > 0, we can derive that

Gst(x) = (Gs(x))t

= Gt(α(s)x+ β(s))

= G(α(t)(α(s)x+ β(s)) + β(t))

= G(α(t)α(s)x+ α(t)β(s) + β(t))

= G(α(st)x+ β(st)) (3.24)

Since G is assumed to be nondegenerate, we will get

α(st) = α(t)α(s) (3.25)
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Figure 3.18: Dependency between x
(i)
K and x

(j)
K

Eqn. 3.25 is the famous Hamel function equation. Its only finite measurable and

nonnegative solution is in the form of

α(t) = t−θ, θ ∈ R (3.26)

If θ = 0, then we have α(t) ≡ 1 and from eqn. 3.24, we can get

β(st) = β(s) + β(t) (3.27)

The eqn. 3.27 is a variant of the Hamel equation, the solution is in the form of

β(t) = −c log t, t > 0, c ∈ R (3.28)

Substitute α(t) and β(t) into eqn. 3.23, we obtain

G(t)(x) = G(x− c log t) (3.29)
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Figure 3.19: Fit of Gumbel distribution to maximum average drowsy transmission
power

The solution of eqn. 3.29 leads to Gumbel distribution and other two types of

distribution. The details of the proof can be found in Resnick (1987). In order

to apply EVT, the sequence J(xK)
(1), . . . , J(xK)

(n) must be i.i.d. Unfortunately in

our problem, it is hard to prove the sequences are i.i.d. or deduce their underlying

distribution which introduces the key challenge. But intuitively, as illustrated in Fig.

3.18, we can assume the dependency between J(xK)
(i) and J(xK)

(j) decreases while

the distance between x
(i)
K and x

(j)
K increases. And EVT is also proved to work for

dependent sequences subject to this regularity conditions. In the simulation part, the

result further supports our assumption.

In order to verify our previous assumption, we simulate the control procedure of

the drowsy transmission and record the corresponding power consumption. In the

simulation, the transmitter is running 5 minutes and the average power consumption

is calculated. The simulation is repeated 10000 times, and the maximum average

power consumption for every 50 trials is obtained. 20 samples are picked up in

the data fitting, after applying EVT estimation with the least square method, we
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get a very good fit of Gumbel distribution as shown in Fig. 3.19. It agrees with

our assumption and proves that EVT can be an efficient and accurate approach to

estimate the performance of drowsy transmission.
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Chapter 4

Energy Harvesting Wireless

Transmitter

4.1 Backgrounds and Motivations

Although the energy harvesting technique is attractive, it introduces new challenges

to the power optimization design of the wireless system due to the dynamic and

discontinuous characteristics of energy harvesting. The promising technique is

beneficial to wireless system, especially wireless sensor networks Seah et al. (2009),

and there have already been some papers on the energy harvesting wireless systems.

Cognitive radio system can also be benefited from energy harvesting but even more

challenges are introduced. So far, only very few papers are concerned with the power

optimization problem in energy harvesting cognitive radio system. Motivated by the

similarity between energy harvesting wireless transmission and the chemical process

control, we proposed a flexible and effective control framework to solve this power

optimization problem.

In the previous work Zheng and Li (2011), we have studied the transmission

strategy of a traditional wireless system with the energy harvesting ability. Unlike

other optimal solutions which are derived by Dynamic Programming, we creatively
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propose a more computational efficient control framework based on Model Predictive

Control (MPC), taking the similarities between the wireless transmission control and

the chemical process control. The proposed control framework could be more flexible

and easier to extend to various scenarios.

4.2 Energy Harvesting Wireless System

In this section, we will first define the energy harvesting wireless system.

Operational Modes of Transmitter

Basically, the transmitter has several operational modes, such as ”Active mode A”,

”Idle mode I” and ”Sleep mode S”. In each operational mode, the power consumption

can be denoted by Pm
A , PI and P n

S especially. Since various transmit powers could

be used in the packet transmission, there could exist multiple power consumption

levels in the A mode, and similarly, the transmitter could be operated under several

sleep modes which lead to multiple power consumption levels in the S mode. The

transmitter can be in one of these modes. We assume that the transition across

different modes may not be instantaneous and denote by TM1→M2 the time overhead

for transiting from mode M1 to mode M2 (M1,M2 ∈ {A, I,S}).

Energy State

We assume that the wireless communication system is powered by a battery or super-

capacitor, meanwhile the system could obtain power through the energy harvesting

device. If the harvested energy is larger than the demand of the transmitter, the

battery will be charged by the harvested energy with an efficiency factor η; otherwise,

the battery is discharged. We assume that the energy state of the battery can be

monitored. According to the characteristics of battery and the energy harvesting
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device, the energy state of the battery e can be described by

e(n′)− e(n) = �u(e, v), (4.1)

where {�u} is a family of functions indexed by the control of the transmitter, and

v is a random factor like the vibration power or sunshine strength. The maximum

capacity of the battery is denoted by emax and the energy harvesting rate at time slot

n is denoted by Pharv(n). Although the proposed control framework is not limited

to a specific energy harvesting approach, in our analysis, we will consider the energy

harvested from the light resource using a solar panel. The framework can be easily

extended to other energy harvesting resources.

Traffic Load and Channel Condition

In order to simply our analysis, we assume that the random process of outgoing packet

satisfies the Poisson distribution. The average number of outgoing packets within a

time slot is denoted by μ and the packet length is a constant which is denoted by

L. There exits a buffer in the transmitter which has a maximum size bmax. We also

assume that, if needed, the current channel condition, denoted by G(n) the channel

gain at time slot n can be obtained at the wireless interface which can be achieved

by allowing the feedback of channel state information.

System State and Control Set

In the dissertation, we define the system state as a vector �x = [xb, xe], where xb is

the buffer state in the transmitter, and xe is the energy state of the battery. The set

of controls u is defined as all available operational actions of the transmitter, such

as mode transition, adjusting the transmit power or changing the transmission rate.

Here we consider the channel condition, dynamics of harvested energy and outgoing

traffic as the disturbances w to the system state.

51



We implement the power model of the wireless transmitter also based on the

practical 802.11b interface. The transmitter consumes 287mW in the idle mode.

Two transmit power levels are adopted. In the active mode, 80mW and 200mW

additional power will be consumed. A deep sleep mode is selected, which will consume

30mW . The transition from active mode to idle mode or sleep mode is instantaneous;

however, it will take 5ms to wake-up the transmitter. The time slot is defined to be

0.1ms. For simplicity, the packet length is fixed to 1kb. There are two transmission

rates, 1.5Mb and 2Mb specifically. The channel gain is generated from the Jakes

fading process, ranged from −155dB to −134dB. A frequency bandwidth of 1MHz

is assumed, where noise power density is−174dBm. A 25cm2 solar panel is used as the

energy harvesting device and it could provide nearly 14mW/cm2 power in the normal

situation. The recharging efficiency is assumed to be η = 0.7. The maximum battery

capacity is set to 24.5Wh and is discretized to 100 levels. The maximum buffer size

is set to 20 packets. We assume that the traffic follows poisson distribution and then

test different average values of μ in the simulation (here μ means the average number

of packets arriving at the buffer per time-slot). Besides, we pick up m = 3 in the

lookahead policy optimization to balance the computational cost and performance.

4.3 Real Data of Primary User Spectrum Occu-

pancy

The prominent distinction between cognitive radio system and the traditional wireless

communication is the interruption introduced by primary users, which is highly

dependent on the statistical features of primary user spectrum occupancy behaviors.

To get a better evaluation of our proposed control strategies in the real world, we

adopt the data collected from GSM Abis interface of several base stations to emulate

the primary users spectrum occupancy behaviors. The data set was extracted from

GSM Abis interface signaling of three Base Transceiver Stations (BTSs) of a China

52



0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Idle

Occupied
Channel 1

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Idle

Occupied
Channel 5

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Idle

Occupied
Channel 10

Figure 4.1: Channel Occupancies of the Real Cellular Users

GSM operator. The call signaling messages of the monitored BTSs were collected and

analyzed by Tektronix K1297 in Huangshi City, Hubei, China, lasting from several

hours to more than one day. The time stamp and channel number of each voice call

are pulled from the targeted channel activation and RF channel release messages. We

use the extracted information to model the BTSs traffic load or more specifically the

primary users activities throughout our performance evaluation.

For each BTS, there exists totally 192 channels. In our study, we assume the

cognitive radio system utilize 10 of those channels. Fig. 4.1 is an example for the

channel occupancies of channel ID 1, 5, 10 which are extracted from the real cellular

data. From the figure, we can also observe that all of those channels are underutilized

(especially channel 1, the utilization is below 50%) which provide good opportunities

for the secondary users in cognitive radio system.

We assume periodic spectrum sensing in the dissertation work. The transmitter

senses the channel every 10s and updates the channel availability. The transmitter
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Figure 4.2: Similarity between chemical engineering and energy harvestiong
communication

keeps a history of the usable channel. Once the transmitter is trying to send out

packets, it senses the previously utilized channel N first. If channel N is not available,

then it will randomly choose another channel. Meanwhile it will set up a timer for

channel N, before the timer expires, the transmitter will never select the channel N.

In our study, the timer is set to 10s to achieve the best performance.

4.4 Model Predictive Control Based Transmitter

Design

Model Predictive Control is a well studied approach in the community of automatic

control. The essence of MPC is to predict the future states with the system

model, and optimize the forecasts of the process behavior Rawlings (2000). MPC

is widely applied in the industrial area, e.g., the chemical process control in chemical

engineering; various industrial MPC algorithms have already been proposed. Our

proposed framework is motivated by the similarity between energy harvesting wireless

transmission and the chemical process control which is shown in Fig. 4.2.

In the energy harvesting wireless transmission, the resources such as available

energy, bandwidth, as well as the outgoing packets, can be considered as the original
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chemical materials for a reaction. The control of the energy harvesting wireless

transmission is essentially to manage the balance of different materials to obtain

a desired output, i.e., the transmission success. To differentiate from the chemical

process control in chemical engineering, we coin the control of energy harvesting

wireless transmission the transmission process control. In order to improve the

generation rate, it is of key importance to study how to control the flow of different

materials in the chemical process control. Similarly, in the transmission process

control, the focus of our study is to optimize the utilization of the available resources,

which can be achieved by power management and changing transmit power or

transmission rate.

As stated by Ernst et al. (2009), in our case, the RL methods can work directly for

the energy harvesting wireless communication, the real trajectories could offer them

a way to overcome the problems related to uncertainties on the model. However,

the information is not always sufficient for the RL techniques to obtain some good

policies even if such trajectories are available. Generating trajectories from an even

uncertain model, could therefore help these methods to behave better.

The close-loop RL performs more robust than the open-loop MPC, but with a

good model, MPC could lead to more accurate control. In our energy harvesting

wireless transmission, if the energy harvesting device is known and environment is

fixed, we can get a good enough model. A possible way is to use offline global RL and

online local MPC together. The online MPC could exploit the policies precompiled

by offline RL, together with the system model, in order to start optimization from a

better initial guess of the optimal trajectory. This combination of approaches could

allow to circumvent limitations of MPC such as convergence problems or the risk

of being trapped in a local optimum, meanwhile, provides accurate control which is

important for the real-life wireless communication system. In the dissertation work,

we mainly focused on the MPC approach, indeed the RL technique is exploited in

the tabular model MPC.
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For a traditional wireless system with energy harvesting ability, we can define the

system state as a vector �x = [xb, xe], where xb is the buffer state in the transmitter,

and xe is the energy state of the battery. The set of controls u can be defined as all

available operational actions of the transmitter, such as mode transition, adjusting

the transmit power or changing the transmission rate. Here we consider the channel

condition, dynamics of harvested energy and outgoing traffic as the disturbances w

to the system state, thus the system state can be denoted by

�xk+1 = f(�xk, uk, wk). (4.2)

Assume that we have some desired states �xd, i.e. the buffer level (it is related to

the transmission delay and we would like to keep it as low as possible) and the energy

level of the battery (we need to maintain the energy level higher than a threshold,

in order to always support the operations in case of emergency). When the system

state enters the desired region, we will use some control policy ũ that keeps the state

within the desired region Xd for all possible disturbances, i.e.,

f(�x, ũ(�x), w) ∈ Xd, (4.3)

where �x ∈ Xd and w ∈ W (�x, ũ(�x)). Meanwhile we introduce a cost function g(�x, u)

if �x /∈ Xd. The cost is calculated by

g(�xk, u(�xk)) = �α(�xk+1 − �xd)
2 (4.4)

where �α is a weighting vector.

MPC can be viewed as an m-step lookahead policy optimization based on the

predictive model, and we need to solve anm-stage minimax control problem of finding

a control policy series û = ûk . . . ûk+m−1 at stage k to minimize Bertsekas (2011),
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which is given by

max
k+m−1∑
i=k

g(�xi, u(�xi)). (4.5)

The MPC applies at stage k the first component of the policy series û as the the

control

u(�xk) = û(�xk). (4.6)

However the policy obtained from MPC is suboptimal and could be myopic.

The model is an essential element for the MPC control problem. In fact, the energy

harvesting wireless communication system discussed previously is a hybrid system,

constituted by a discrete transmitter subsystem (the operations of the transmitter are

discrete) and a continuous energy harvesting and storage subsystem (the energy state

of the battery and the harvested energy can be described by the continuous models).

It is difficult to model such a complicated system into a linear or non-linear form. In

this study, we introduce a simple tabular predictive model, and the simulation results

will show that this model works well for the hybrid system.

Tabular Model

When there is no a priori information about the channel condition and traffic pattern,

the simple and easy tabular model can be applied in the MPC problem. Essentially,

the tabular model is a table which can be indexed by the current system state �x(n)

and current action u(n). The return is the next system state �x(n′). Note that the

procedure here is very similar to model and planning in reinforcement learning. It

can be described by the equation

�x(n′) = T −Model (x̃ (n), u(n)). (4.7)
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The evolution procedure of this tabular model can be explained by the following three

steps:

1. MPC utilizes the old tabular model to obtain a control policy and send it to

the transmitter.

2. The transmitter performs the operation according to the control policy.

3. The latest state of the system is observed and the information is used to update

the tabular model.

The tabular model could be inaccurate, and it may require a lot of samples to update

this model. In practice, we can use helpful historical information to initialize the

tabular model and make it more efficient. In the performance comparisons, we show

that the performance could even take advantage of a dedicated and trained tabular

model.

Equation Model

Once the channel condition at time slot n can be obtained and the traffic load is

known (in some applications, the traffic load can be exactly estimated, i.e. in the

wireless sensor network, if periodic sensing is adopted, the reporting packets might

be generated at a known rate, thus we can easily get the estimated parameters such

as μ for the poisson assumption), we can utilize a more delicate model.

If the transmitter is in the A mode and packets are being delivered, The system

state equation can be denoted by

xb(n+ tk) = min(bmax, xb(n) + τ̂ − ı(Ĉ >= R))

xe(n+ tk) = max (min (emax, xe(n)

+ (Pharv(n)− PAm(n))× tk) , 0) , (4.8)
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where R is the transmission rate, and tk = �L/R
 is the transmission time for a

single packet. τ̂ is the estimated traffic entering the buffer; for a Poisson random

process with parameter μ, we can obtain τ̂ = μ × tk. ı is an indication function. It

equals 1 if the estimated channel capacity is larger than the transmission rate R, and

0 otherwise. The estimated channel capacity is computed by

Ĉ = B × log2

(
1 +

G(n)Pm
A

N0B

)
. (4.9)

Here Pm
A is the transmit power, and B is the bandwidth. We use the channel gain

G(n) at time slot n as the average channel gain since the transmission time for a

single packet is usually very small, and we assume that the channel condition does

not change too fast.

If the transmitter is in other operational modes, or under the transition between

different modes, the system equation is defined as

xb(n+ tk) = min(bmax, xb(n) + τ̂)

xe(n+ tk) = max (min (emax, xe(n)

+ (Pharv(n)− PM(n))× tk) , 0) . (4.10)

If we take the cognitive radio system into consideration, then a slight change will

be applied to 4.8 and 4.10. Once the packet is going to be delivered, the system state

equation can be modified to

xb(n+ tk) = min(bmax, xb(n) + τ̂ − ı(Ĉ >= R))ı(ChN = 0))

xe(n+ tk) = max (min (emax, xe(n)

+ (Pharv(n)− Psense − PAm(n)ı(ChN = 0))× tk) , 0) , (4.11)
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where Psense is the power consumption by spectrum sensing, and ı(ChN = 0) is an

indication function which equals to 1 if chosen channel N is available, otherwise equals

to 0. The probability that channel N is idle can be estimated statistically.

In other modes, the system equation is redefined as

xb(n+ tk) = min(bmax, xb(n) + τ̂)

xe(n+ tk) = max (min (emax, xe(n)

+ (Pharv(n)− PM(n)− Psenseı(Tsense = 0))× tk) , 0) . (4.12)

where ı(Tsense = 0) equals to 1 once the timer for periodic spectrum sensing expires.

4.5 Destabilization and Safety-Stocks

From the preliminary research, we already show that MPC can be successfully

exploited to a traditional wireless transmitter with energy harvesting ability. In

the dissertation work, we will extend the control framework to the transmitter in a

CR system. It will introduce some new challenges since the interruption from PUs

will lead to much more complicated system state and severe disturbance. It is also

difficult to obtain the explicit equation model of the system, thus we will focus on

the tabular model and also study other possible models.

Meanwhile, as we mentioned before, the suboptimal and myopic control policy

generated by MPC can lead to destabilized results. A naive illustration is shown in

Fig. 4.3, where the myopic control policy may attempt to transmit the packet as soon

as possible, which will lead to the persistent decrease in the energy level and in turn

the depletion of the battery. In this situation, newly incoming packets in the buffer

cannot be handled efficiently, and finally the buffer is overflowed.

From Fig. 4.4, we can see that, after the depletion of the battery, there exits

a delay before new packets could be transmitted. The transmitter needs to gather

sufficient energy to transmit the packet and perform corresponding operations. We
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Figure 4.3: An Illustration of the Myopic Policy

call it “energy starvation”; in this way, the performance of the transmitter decreases

drastically.

The wireless transmitter can be redefined by a 2-queues network model where there

exist two queues, as shown in the Fig. 4.5. One is the energy queue which denotes

the battery state and the other is the packet queue which stands for the buffer state.

In order to maintain the stability, it requires to avoid the excessive idleness at each

queue in the network. Here we propose to apply “static safety-stock” Meyn (2008)

to combat the starvation of these queues. Basically, safety-stock can be used as a

virtual buffer to protect the queues from various uncertainties, i.e. inaccurate model,

myopic control policy and etc. We will also study the required size of safety-stock

and the performance gain can be obtained from safety-stock in the dissertation work.

Serve energy queue first if xe < xe1

Serve packet queue if xe > xe2, (4.13)

where xe1 > 0 and xe2 > 0 are given constants. This policy looks ahead to avoid

starvation at the energy buffer, when xe < xe1, the system will emphasize recharging
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Figure 4.4: Illustration of Energy Starvation

the energy buffer rather than sending packets from the packet queue when xe < xe1

and xe1 is called a safety-stock for the energy queue.

4.6 Performance Evaluation

In this section, we compare the performances of the tabular model based MPC and

equation model based MPC which are introduced in section 4.3. In the tabular

model based MPC, we assume that some historical information is available and is

used to initialize the tabular model. In the equation model based MPC, we assume

that the traffic pattern is known and the current channel condition can be acquired

when a decision is made. Meanwhile, we evaluate the Dynamic Programming (DP)

solution with the exact traffic and channel conditions pre-known. The performance

of safety-stock based transmission strategy is also provided. As a baseline, we use

two transmission strategies

1. The transmitter tries to transmit the packet whenever the buffer is non-empty

and the energy in the battery is higher than 30% level.
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Figure 4.5: Illustration by a 2-Queues Model
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Figure 4.6: Realtime Comparison between Tabular-based MPC and Baseline
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2. The transmitter tries to transmit the packet whenever the buffer is non-empty

and the energy in the battery is enough to perform the operation of transmission.

A realtime comparison between tabular-based MPC and baseline 1 is shown in Fig.

4.6. We can see that MPC approach always achieves similar buffer performance

compared to the baseline, but much better performance on the energy management.

Here we should point out that the proposed control strategies are only sub-optimal.

Also MPC is sensitive to the parameter setting. In the calculation of the cost function

g(�x, u(�x)), the same weighting vector �α = [10, 0.05] is used: the first element in the

vector is the weighting factor for the buffer level while the second one is for the

energy level. If we need to maintain a high average energy level, we can increase the

second weighting factor. Meanwhile, the average buffer level will also increase since

the remaining energy and buffer level are opposite. This is intuitive, if we want to

reserve more energy, then we will have more packets waiting in the queue.

We evaluate the performances of the sub-optimal solutions under various traffic

loads. In Fig. 4.7, we use a performance metric called average energy level, which

denotes the average energy in the battery normalized by the maximum battery

capacity.

Fig. 4.8 shows the probability that the remaining energy in the battery falls below

60% of the maximum battery capacity. This performance metric is helpful when we

need to maintain the remaining energy at a high level for some emergent operations.

Average buffer level, which denotes the average number of packets remaining in the

buffer normalized by the maximum buffer size, is shown in Fig. 4.9. This performance

metric is related to the packet delay.

The number of success packets divided by the total number of packets is coined

the packets successful ratio and is shown in Fig. 4.10.
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Figure 4.7: Average Energy Level at Transmitter
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Figure 4.9: Average Buffer Level at Transmitter
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Chapter 5

Multi-Objective Multi-Agent

Routing

5.1 Backgrounds and Motivations

To address the problem of routing in a dynamic CRN, the similarity between routing

in CRN and the walking in a random maze is identified by us, as illustrated in Fig.

5.1. In a random maze, the walls emerge and disappear randomly. If considering

each wall as the interruption of primary users, then the task of walking out of the

random maze is essentially the same as the routing in dynamic CRNs. When a

person is placed at the entrance of a random maze whose structure and statistics are

completely unknown, an effective approach is to walk within it and learn from the

experience (e.g. if the person finds that a wall often emerges in a certain area, he/she

will try to avoid that area). In the community of artificial intelligence, people have

applied reinforcement learning for the task of random maze Sutton and Barto (1998)

and achieved good performance. Motivated by the intuition of human beings and the

success of reinforcement learning, we apply the principle of reinforcement learning

for the routing in dynamic CRNs, which can effectively address the challenges of

randomness and uncertainty. For the challenge of multiple performance specifications,
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Figure 5.1: A cognitive radio maze

we apply the multi-objective learning algorithm in Gábor et al. (1998) to address the

multiple performance metrics simultaneously. Note that reinforcement learning has

been applied for routing in CRNs in Xia et al. (2009). However, Xia et al. (2009)

addresses only stationary spectrum states and only a single performance metric. To

the authors’ best knowledge, there have not been any studies applying the multi-

objective learning in CRNs.

In the design of a routing protocol, there could be many adoptable performance

metrics, e.g., delay, hop count and power cost. Different routing protocols may focus

on different performance metrics, e.g., hop count is the metric for the popular routing

protocols like DSR Johnson et al. (2001) and AODV Perkins and Royer (1999). Our

concern is how to integrate several desirable performance metrics for the routing

procedure while address the dynamics introduced by the interruptions from PUs.
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5.2 Cognitive Radio Network

In this section, we will introduce the cognitive radio network. In order to simplify

the problem analysis, we will use the following assumptions throughout this paper.

• There exist multiple licensed channels.

• The transmission is packet based.

• The activities of PUs can be modeled as Markov processes.

• In each time slot, each PU can be either active or idle. If a PU is active, it

will occupy a fraction of the licensed channels. Before SUs start transmitting

packets, they must perform spectrum sensing first.

• We only consider the packet loss due to transmission failures, which is dependent

on the link condition.

Let us consider a simple CRN shown in Fig. 5.2. Within this network, there exist

M PUs and N SUs which are all randomly deployed. In this figure, M and N equal

3 and 10 respectively. Each PU will be assigned K licensed channels. At each time

slot, each PU will be either active or idle, which means PU will occupy K0(K0 ≤ K)

licensed channels when being active; all the K channels will be available to SUs when

the PU is idle. For example, PU C is assigned five licensed channels {1, 2, 3, 4, 5}, thus
K = 5. When PU C is active, three channels randomly out of the five channels will

be occupied by PU C, e.g. channel {1, 3, 4} will be occupied. If a SU, say, SU 6, in

the interruption area of PU C wants to transmit packets, it should perform spectrum

sensing first. We assume that, in each time slot, each SU can sense only one channel.

If SU 6 senses channel 1, it will find that this channel is not available. Then, SU 6

should wait until PU C leaves, or choose another channel, say, channel 2, to sense.

Once again, if SU 6 senses channel 2, it will find that the channel is available and

then use this channel to communicate with other SUs.
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Figure 5.2: The illustration of a simple CRN

Let us consider a set of pairs (current node, destination node) as the state space

and the available neighbor nodes as the action space. A forwarding node for the next

hop can be chosen from these neighboring nodes. The one-hop transmission delay

is taken as the immediate reward. The total transmission delay could be expressed

in the same way of (??). The only difference is that our goal is to minimize the

expected reward. Thus we need to find an optimal policy π∗, leading to the optimal

value function:

V π∗
(s) = min

π
V π(s)

= min
a∈A(s)

[
R(s, a) + γ

∑
s′∈S

Pss′(a)V
∗(s′))

]
. (5.1)

In this case, the optimal policy is the route with minimizes the transmission delay that

we could obtain. However, in many scenarios, the transition probability Pss′(a) and

reward function R(s, a) cannot be expressed explicitly. Q-learning Watkins (1989) is

one of the most popular algorithms to find the optimal policy when the transition

probability and reward function are not completely known. The update rule for
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Q-learning is given by

Q(st, at) ← Q(st, at)

+ α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (5.2)

Instead of V π(s), Q(st, at) is used here.

5.3 Multi-Objective Multi-Agent Reinforcement

Learning

RL algorithms usually deal with problems where the task is to maximize the

performance on a single objective, when scalar reward is received from the environ-

ment. Unlike the traditional RL algorithms, Multi-objective Reinforcement Learning

(MORL) introduced by Gabor Gábor et al. (1998) applies reinforcement learning to

problems where there exist multiple objectives and the reward is thus a vector. Thus

we propose to apply MORL in the routing algorithm to satisfy multiple performance

goals while obtaining the optimal route.

For the MORL with two objectives, the value functions can be represented by

V π,1(s) and V π,2(s) for each objective, respectively. We set a hard constraint on one

objective and then optimize the other. It will result in a typical optimization problem

in the following form:

min V π,1(s)

subject to V π,2(s) ≤ Rconstr. (5.3)

Here Rconstr is the hard constraint on objective 2.

For the MORL with two objectives, the value functions can be represented by

V π,1(s) and V π,2(s) for each objective, respectively. We set a hard constraint on one

objective and then optimize the other. It will result in a typical optimization problem
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in the following form:

min V π,1(s)

subject to V π,2(s) ≤ Rconstr. (5.4)

Here Rconstr is the hard constraint on objective 2.

5.4 MORL Routing Algorithm for Cognitive Ra-

dio Networks

In the preliminary study Zheng et al. (2012), we focused on two metrics, namely

transmission delay and packet loss rate. When we consider the algorithm design as

an optimization problem, there could be two choices:

1. Minimize transmission delay under desired constraint of packet loss rate, which

would be suitable for the scenario of a best effort application.

2. Minimize packet loss rate under desired constraint of transmission delay, which

would be proper for the scenario of a realtime application.

In our proposed MORL-based routing, we adopted the first one. In fact, it is also

easy to implement the latter one under our proposed framework. Meanwhile, in order

to simplify the MORL, we propose to use two Q-tables in our algorithm, one for the

transmission delay and the other one for the packet loss rate. As mentioned above,

the Q-table stores the accumulated reward regarding to the state and corresponding

action. Thus the first Q-table uses the one hop transmission delay as the immediate

reward while the second one uses the accumulated packet loss rate as the immediate

reward. The optimal action is to find the forwarding node for the next hop in order to

minimize the Q-values. Below is the simplified procedure of our proposed algorithm.
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Procedure 2 Procedure of MORL-based routing
1: Initialize all Q-values at each nodes.
2: for Each time slot do
3: while Current node is not the destination do
4: Choose the forwarding node from the local Q-table. The action should minimize

the Q-table for transmission delay, while maintain the corresponding value of the
Q-table for packet loss rate under a specific constraint.

5: Sense the channel, if the channel is occupied by PU, then randomly choose another
channel.

6: Send packet to the forwarding node and wait for the ACK.
7: if ACK is received then
8: Update the Q-table.
9: end if
10: end while
11: end for

Comparison between Shortest Path and MORL-based Routing: Transmis-

sion Delay

Here, we build a simulator in Matlab to perform the simulation for our theoretical

analysis. We compare the transmission delay between our proposed algorithm and

the shortest path under different activities of PU.

In Fig. 5.3, the cumulative distribution function (CDF) of the transmission delay

is shown for both the MORL routing and the shortest path. The setting for PU is

P00 = 0.2, P01 = 0.8, P10 = 0.1, and P11 = 0.9; thus PU is highly active and channels

are frequently occupied by PU. In this scenario, our proposed MORL-based routing

performs much better than the shortest path, since a better route is learned and

the interruption region of the PU is successfully bypassed. As we mentioned in the

system model, PU could occupy K0 out of K licensed channels when it is active. The

transmission delay versus this K0/K is shown in Fig. 5.4. When K0/K increases, it

means that there will be less alternative channels for SU to use when PU is present.

Thus the transmission delay of the shortest path increases linearly ∗. It is obvious that

∗Recall that, for the simplicity, we use a random channel selection.
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Figure 5.3: CDF of transmission delay when PUs are highly active

the performance of MORL-based routing does not suffer much from the increasing

K0/K.

Conversely, when the PU is quite inactive, e.g., P00 = 0.9, P01 = 0.1, P10 = 0.8

and P11 = 0.2, the performance is shown in Figures 5.5 and 5.6. We can observe that

these two algorithms achieve very similar performances, since in this setting, the PU

has nearly negligible impact on the transmission of SUs. The MORL-based routing

introduces a slightly larger transmission delay because, in the learning procedure of

the MORL-based routing, it usually takes tens of trials before it converges to the

optimal route, thus resulting in a larger transmission delay.

Transmission Delay under Different Available Channel Opportunities

From Fig. 5.7, which shows the average transmission delays versus different channel

idle probabilities, we can observe that, when the idle channel opportunity is large,

the transmission delays of the MORL-based routing and the shortest path are almost

the same. When the available channel opportunity decreases, the transmission delay
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Figure 5.4: Transmission delay vs K0/K when PUs are highly active
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Figure 5.5: CDF of transmission delay when PUs are highly inactive
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Figure 5.6: Transmission delay vs K0/K when PUs are highly inactive

of the shortest path increases drastically, while the MORL-based routing increases

only marginally.

Packet Loss Rate

Since we only consider the packet loss caused by the link condition, the comparison

between MORL-based routing and shortest path routing is actually unfair. The

shortest path routing has an advantage due to the minimum hops. On the contrary,

in order to minimize the impact from PU, MORL-based routing usually lead to more

hops, which likely increases the packet loss rate. The simulation result is shown in

Fig. 5.8, where the same setting as that in Fig. 5.3 is used. Despite the unfairness,

the packet loss rate of the MORL-based routing is still comparable to that of the

shortest path routing.
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Figure 5.7: Performance of MORL-based routing under different available channel
opportunities
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Figure 5.8: CDF of packet loss rates for both routing schemes
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Figure 5.9: Convergence of MORL-based routing

Convergence of MORL-based Routing

The convergence of MORL-based routing is shown in Fig. 5.9 for a typical realization

of CRN. It can be seen that the MORL-based routing converges very fast to its

optimal point. Some fluctuations can be observed due to the exploration action in

the learning process. In our simulation, only no more than tens trials are needed for

the learning to converge.

5.5 QualNet based Evaluation

In oder to evaluate the performance of MORL-based routing, we implemented

it with QualNet which is a network evaluation simulator with ultra high-fidelity.

Unfortunately, there is no existing library in QualNet to support the simulation for

CRNs. Thus we added the behavior of primary users and implemented our MORL-

based routing in QualNet. In order to compare the performance between MORL

and other routing protocols. We modified the existing protocol LAR1 in QualNet to

support the simulation for CRNs. Since LAR1 is not designed for CRNs, bias could
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Figure 5.10: Topology of the network

exist in the comparison. The topology of the CRN is illustrated in Fig. 5.10. Without

loss of generality, we use a simple topology here and three PUs are considered in the

simulation. Sixty SUs are randomly deployed in a 3000m×3000m area. The radius

of interruption region for PU is set to 1000m, and the communication range of SUs is

set to 500m. The activity of PU is modeled by an MDP. We denote the states of the

PU by 0 and 1, which means that PU is absent or present, respectively. Thus, the

transition probability for the MDP can be represented by P00, P01, P10 and P11. The

probability that the PU is absent can be computed through P0 = P10/(1−P00+P10),

and we will use this P0 as the channel idle opportunity in the following discussion. The

requirement for the packet loss rate is less than 10%. The performance is obtained

from multiple random realizations of the CRN topology.

QualNet is a network evaluation simulator with ultra high-fidelity. Unfortunately,

there is no existing library in QualNet to support the simulation for CRNs. Thus we

added the behavior of primary users and implemented our MORL-based routing in
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Figure 5.11: Morl vs LAR1 (average transmission delay normalized by that of
LAR1)

QualNet. In order to compare the performance between MORL and other routing

protocols. We modified the existing protocol LAR1 in QualNet to support the

simulation for CRNs. Since LAR1 is not designed for CRNs, bias could exist in

the comparison. The details of the implementation are omitted here due to limited

space. Using the same setting in the previous simulation, the normalized average

transmission delay is shown in Fig. 5.11. We can observe that in the learning stage,

MORL-based routing could suffer to some performance degradation. It is due to the

exploration of the learning algorithm. The proposed MORL-based routing algorithm

converges later and about 15% performance gain can be obtained.
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Figure 5.12: Epidemic Propogation in Cognitive Radio Network

5.6 Epidemic Propagation in Cognitive Radio Net-

work

In order to better understand the network dynamics. We propose that the multi-

objective learning procedure in the network can be explained by a epidemic model.

Assume that the secondary users are well trained as the “infected nodes” and the

nodes are being trained or untrained as the “susceptible nodes”. The larger the

number of infectious nodes among one node’s contacts (neighbor nodes), the higher

the probability of the “infection”. An illustration is shown in Fig. 5.12 We can

consider each secondary user in the cognitive radio network as a susceptible node at

the initial learning stage. The learning procedure can be considered as the epidemic

propagation procedure.

In the epidemic models, the population can be divided into different compartments

such as infectious (denoted by I ), susceptible (denoted by S ) and recovered (denoted

by R). Assume the propagation is spreading in a population of N individuals, then
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N =
∑

m X [m](t), where X [m](t) is the number of individuals in the compartment [m]

at time t

The reaction rate equation for the average number of nodes in the compartment

[m] can be given by

∂tX
[m] =

∑
h,g

vmh,gah,gN
−1X [h]X [g] +

∑
h

vmh ahX
[h] (5.5)

where ah,g is the transition rate of the process.

Epidemic models have been studied for many years to explain the epidemic

propagation through the population. There are three popular models for epidemic

propagation Barrat et al. (2008) :

• SI model, the susceptible node can only become infectious and never recover.

• SIS model, the node can be infected from susceptible state or recovered from

infectious state.

• SIR model, the node can recover from the infection and becomes immune to

the epidemic.

The dynamic of the network state can be defined by the ordinary differential

equation (ODE), i.e. in the SI model, the susceptible population can be calculated

by ∂tS = −βSI while the infectious population will be described as ∂tI = βSI where

β is the contact rate.

In our study, we consider a simplified network as shown in Fig. 5.13. The source

node is always located at the center of the network. The destination is randomly

picked at one of the corners. Every node can only communication with its neighbors.

The source node at least needs 3 hops to reach the destination node, thus we call

it a 3-hops cognitive radio network. The destination node can be regarded as the

infected node. The epidemic is spreading in the cognitive radio network, until all

nodes has been infected. We applied MORL-routing algorithm in this network, once
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Figure 5.13: 3 Hops Cognitive Radio Network

the local Q table converges, we define the local node is “infected”, and the “disease”

will continue to spread until it reaches the whole network. In the simulation, the

source node continues to send packets to destination node, every packet transmission

is considered to be a trial. We repeated the simulation for 10000 times, and average

the number of well learned nodes (local converge) at every trial. Uniform sampling is

applied and data are fitted to SIS model. The results are shown in Fig. 5.14 and Fig.

5.15. It is obvious that SIS model can be used to depict the dynamics of the learning

procedure in the cognitive radio network. It also points to a very good direction to

further study the network dynamics.
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Figure 5.14: SIS fit of the learning propagation in a 3-hops network
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Figure 5.15: SIS fit of the learning propagation in a 4-hops network
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Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

Energy and spectrum are two fundamental resources for wireless communication.

Unfortunately, they are always scarce. The dissertation work presents a set of creative

solutions to the optimization and learning of energy efficient cognitive radio system

which can be considered to better utilize the energy and spectrum resources.

Firstly, drowsy transmission, which produces optimized idle period patterns and

selects the best sleep mode for each idle period between two packet transmissions

through joint power management and transmission power control/rate selection, is

introduced to cognitive radio transmitter. Both the optimal solution by dynamic

programming and flexible solution by reinforcement learning are provided. The

performance bound and performance gain are analyzed. The challenge from curse

of dimensions is addressed.

Secondly, when cognitive radio system is benefited from the infinite but unsteady

power supply, we propose an innovative and flexible control framework based on

model predictive control. We also give a solution to combat the problems, such as

the inaccurate model and myopic control policy, introduced by MPC.
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Last, after study the optimization problem for point-to-point communication,

we apply multi-objective reinforcement learning to the cognitive radio network, an

adaptable routing algorithm is proposed and implemented. Epidemic propagation is

studied to further understand the learning process in the cognitive radio network.

6.2 Directions of Future Research

The ideas and concepts in this dissertation offer a great deal of possible future research

directions. We here discuss the following areas as what we think the most important.

Characteristics of Battery

The first important area for future research is to take the characteristics of battery

into the optimization. We have shown that in the wireless communication system, a

lot of parts especially the analog modules are not ideal and they will introduce both

time and energy cost into the optimization problem. Battery is indeed a key part in

the modern wireless system, when we study the energy efficiency of the whole system,

we should not ignore the impact of battery. It will be interesting to study the optimal

strategies based on the characteristics of the battery such as the power leakage curve,

charging curve and etc.

Automatic Parameter Selection

So far most of our studies are based on manually picking up the best parameters

for the optimization, i.e. the learning rate. We believe in the future, the cognitive

radio system will be even more powerful and the optimization algorithm should be

even smarter. Adaptability is important to cognitive radio system. Thus learning

algorithm should be further applied in the system optimization and the parameters

or thresholds related to the algorithms should also have the ability to adaptive to the

environment.
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6.3 Closing Remarks

Optimization forms a fundamental issue for many wireless communication systems.

The work of this dissertation tries to propose several approaches, which are mainly

based on dynamic programming, reinforcement learning and model predictive control,

to get improved energy and spectrum efficiency in the cognitive radio system. We

have developed a drowsy transmission strategy by creating more usable idle time

slots of the transmitter. By doing so, the transmitter have the chance to go into

low power consumption modes as much as possible which leads to higher energy

efficiency. Further, we have developed a control framework for energy harvesting

cognitive radio transmission based on the on-line model predictive control. Obviously,

our implementation does not completely capture every detail of the energy harvesting

wireless communication. But we believe that control based on the combination

of model predictive control and reinforcement learning points to a very promising

direction. We also proposed a multi-objective reinforcement learning based routing

algorithm in the cognitive radio network. To have a good understanding of the

performance, we studied cross-disciplinary approaches, such as extreme value theory

and epidemic propagation. We hope that the concepts presented in this dissertation

can build a step towards extending the state of art in optimization of cognitive radio

system.
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