1,577 research outputs found

    Effect of Location Accuracy and Shadowing on the Probability of Non-Interfering Concurrent Transmissions in Cognitive Ad Hoc Networks

    Get PDF
    Cognitive radio ad hoc systems can coexist with a primary network in a scanning-free region, which can be dimensioned by location awareness. This coexistence of networks improves system throughput and increases the efficiency of radio spectrum utilization. However, the location accuracy of real positioning systems affects the right dimensioning of the concurrent transmission region. Moreover, an ad hoc connection may not be able to coexist with the primary link due to the shadowing effect. In this paper we investigate the impact of location accuracy on the concurrent transmission probability and analyze the reliability of concurrent transmissions when shadowing is taken into account. A new analytical model is proposed, which allows to estimate the resulting secure region when the localization uncertainty range is known. Computer simulations show the dependency between the location accuracy and the performance of the proposed topology, as well as the reliability of the resulting secure region

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS

    Get PDF
    The rapid growth of the number of wireless devices has brought an exponential increase in the demand of the radio spectrum. However, according to the Federal Communications Commission (FCC), almost all the radio spectrum for wireless com- munications has already been allocated. In addition, according to FCC, up to 85% of the allocated spectrum is underutilized due to the current fixed spectrum alloca- tion policy. To alleviate the spectrum scarcity problem, FCC has suggested a new paradigm for dynamically accessing the allocated spectrum. Cognitive radio (CR) technology has emerged as a promising solution to realize dynamic spectrum access (DSA). With the capability of sensing the frequency bands in a time and location- varying spectrum environment and adjusting the operating parameters based on the sensing outcome, CR technology allows an unlicensed user to exploit the licensed channels which are not used by licensed users in an opportunistic manner. In this dissertation, distributed intelligent spectrum management in CR ad hoc networks is explored. In particular, four spectrum management issues in CR ad hoc networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2) distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed protocol to defend a particular network security attack in CR ad hoc networks; and 4) distributed spectrum handoff protocol in CR ad hoc networks. The research in this dissertation has fundamental impact on CR ad hoc network establishment, net- work functionality, network security, and network performance. In addition, many of the unique challenges of distributed intelligent spectrum management in CR ad hoc networks are addressed for the first time in this dissertation. These challenges are extremely difficult to solve due to the dynamic spectrum environment and they have significant effects on network functionality and performance. This dissertation is essential for establishing a CR ad hoc network and realizing networking protocols for seamless communications in CR ad hoc networks. Furthermore, this dissertation provides critical theoretical insights for future designs in CR ad hoc networks

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    Resource management in location aware cognitive radio networks

    Get PDF
    Dynamic spectrum access (DSA) aims at utilizing spectral opportunities both in time and frequency domains at any given location, which arise due to variations in spectrum usage. Recently, Cognitive radios (CRs) have been proposed as a means of implementing DSA. In this work we focus on the aspect of resource management in overlaid CRNs. We formulate resource allocation strategies for cognitive radio networks (CRNs) as mathematical optimization problems. Specifically, we focus on two key problems in resource management: Sum Rate Maximization and Maximization of Number of Admitted Users. Since both the above mentioned problems are NP hard due to presence of binary assignment variables, we propose novel graph based algorithms to optimally solve these problems. Further, we analyze the impact of location awareness on network performance of CRNs by considering three cases: Full location Aware, Partial location Aware and Non location Aware. Our results clearly show that location awareness has significant impact on performance of overlaid CRNs and leads to increase in spectrum utilization effciency
    corecore