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Spectrum mobility as an essential issue has not been fully investigated in mobile cognitive radio networks (CRNs). In this paper, a
novel support vector machine based spectrummobility prediction (SVM-SMP) scheme is presented considering time-varying and
space-varying characteristics simultaneously in mobile CRNs. The mobility of cognitive users (CUs) and the working activities of
primary users (PUs) are analyzed in theory.And a joint feature vector extraction (JFVE)method is proposed based on the theoretical
analysis.Then spectrummobility prediction is executed through the classification of SVMwith a fast convergence speed. Numerical
results validate that SVM-SMP gains better short-time prediction accuracy rate and miss prediction rate performance than the
two algorithms just depending on the location and speed information. Additionally, a rational parameter design can remedy the
prediction performance degradation caused by high speed SUs with strong randomness movements.

1. Introduction

Cognitive radio (CR) as a solution for the next generation
wireless networks brings new hope to address the wireless
spectrum inefficiency problem which has attracted a great
deal of attention in recent years [1–4]. In general, CR
paradigms are classified in three types: interweave, underlay,
and overlay. In interweave or opportunistic spectrum access
(OSA) model [5, 6], CUs can use the licensed spectrums
opportunistically when the spectrums are detected idle by
spectrum sensing. It is very sensitive to PU traffic pattern and
it relies on the detection error for the models [6, 7]. Thus, it
is essential to investigate the spectrum mobility which is the
foundation of resource allocation and network construction.

In a CRN, the spectrum mobility for CUs includes two
aspects: spectrummobility in the time domain and spectrum
mobility in the space domain [8]. The time-varying and
space-varying characteristics of the spectrummobility lead to
the problem that it is hard to access the licensed spectrums for
CUs in a real network. Time-varying characteristic is because

of the random variations of PUs’ arrivals and departures.
Thus, some related literatures have focused on the impact of
PUs’ activity onCRNs [9–11]. In [12], a selective opportunistic
spectrum access scheme is proposed with the aid of PUs’
traffic prediction techniques. The scheme can estimate the
probability of a channel being idle and choose the best
order of spectrum sensing to maximize spectrum efficiency.
The definition of channel availability vector is introduced to
characterize the state information of licensed channels [13].
And a prediction-based sensing approach is presented to
maximize system throughputwhich reduces the sensing time.
In [14], a forecast scheme of call arrival rate and call holding
time for PUs is proposed. CUs can reduce the frequency
hopping rate through the traffic pattern prediction of PUs.

In the space domain, the movement of CUs directly
results in the changing of the spectrum availability. Never-
theless, the movement of CUs, as one of the most important
factors in wireless communication systems, is not adequately
discussed for CRNs in existing works. A mobility model
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describing airborne nodes is proposed in [15]. And a stability-
capacity-adaptive routing scheme is proposed to achieve
high throughput and small transmission time based on the
model. In [16], an optimal power control algorithm inmobile
CR ad hoc networks is proposed. Without causing harm-
ful interference to PUs, the network achieves maximized
throughput based on the algorithm in the legacy network.
In [17], a cluster-based routing protocol which can increase
throughput and reduce data delivery latency is presented to
mend the route in mobile CRNs. In [18], a general scheduling
framework with the mobility information is conducted to
solve maximum throughput channel scheduling problem for
mobile CRNs. And two polynomial time optimal algorithms
are proposed and evaluated by using the mobility trace
obtained from a real public transportation system.

However, few of existing works investigate the following
two issues: (1) considering time domain and space domain
characteristics of spectrum mobility together and (2) con-
sidering the prediction of spectrum mobility. In practice, a
CRN should be forward looking rather than reactive [19].
And a prediction-based CRN can not only improve system
performance but also minimize interference to PUs [20–22],
because spectrum detecting may take a long time or delay. In
[23], a neural network based channel status predictor using
multilayer perceptron is proposed. The system spectrum
utilization is improved and the sensing energy is saved greatly
by predicting the idle channels. In [24], a channel handoff
scheme based on SVM is presented to reduce the handoff
time. The channel handoff caused by the random movement
of PUs andCUs is considered in the prediction design. In [25],
a binary time series approach is used to predict the future
occupancy of neighboring channels. This approach performs
very well for deterministic occupancy even without updating
data.

The key contributions of this paper are as follows: (1) we
first take the two issues discussed above into account at the
same time. And an effective joint feature vector extraction
scheme is originally designed through the theoretical analysis
on joint information of CUs’ mobility and PUs’ working
activities. (2) Based on the extracted joint feature vector,
a novel SVM-based spectrum mobility prediction scheme
considering the time-space domain of spectrum mobility
together is proposed for mobile CRNs in order to ameliorate
the traditional prediction methods only utilizing the location
and speed information directly. (3) Finally, simulations are
conducted to confirm the effectiveness of the proposed pre-
dictionmechanism.The new predictionmechanism achieves
higher short-time prediction performance than the conven-
tional algorithms with little training nodes, which is vital in
CRNs.

The rest of the paper is organized as follows. The system
model is described in Section 2 and the spectrum availability
of SUs is discussed in Section 3. In Section 4, a spectrum
mobility prediction scheme is proposed based on SVM. The
simulation results are shown along with a discussion in
Section 5. At last, Section 6 concludes the paper.

2. System Model

2.1. Mobile CRN System Model. In this paper, we consider a
mobile CRN scenario where 𝑁

𝑐
CUs coexist with 𝑁

𝑝
PUs

illustrated in Figure 1. Assume that each PU
𝑝
(𝑝 = 1 : 𝑁

𝑝
)

has a licensed access to a spectrum 𝑐
𝑝
with a coverage radius

𝑅
𝑝
. Thus, the number of PUs is equal to the number of

spectrums in the network. Each CU
𝑐
(𝑐 = 1 : 𝑁

𝑐
), with

an interference radius 𝑟, can exploit locally unused licensed
spectrum opportunistically without causing any interference
to the corresponding PU

𝑝
. Suppose that the CRN assigns

spectrums periodically with an allocation interval time 𝑇
𝑐

which is the interval time between two times of spectrum
allocation. We also assume spectrum sensing is ideal in this
paper.

Figure 1 gives out an instantaneous snapshot of a mobile
CRN deployment with 20 mobile CUs. Two PUs are located
in the area. The activity of each PU

𝑝
(𝑝 = 2 in Figure 1)

is characterized as an on/off (busy/idle) model. The busy
time and idle time of PU

𝑝
can be modeled by the exponential

distribution with means 𝛼
𝑝
and 𝛽

𝑝
, respectively [26–28].

The probability density function (PDF) can be written,
respectively, as

𝑓ON (𝑡, 𝛼
𝑝
) =

1

𝛼
𝑝

𝑒
−𝑡/𝛼𝑝 , 𝑡 ≥ 0,

𝑓OFF (𝑡, 𝛽𝑝) =
1

𝛽
𝑝

𝑒
−𝑡/𝛽𝑝 , 𝑡 ≥ 0.

(1)

In this paper, a random mobility model which charac-
terizes the movement of CUs in a two-dimensional space
is considered [29]. The movement of each CU

𝑐
consists

of a sequence of random length intervals called mobility
epochs during which CU

𝑐
moves at a constant speed in a

constant direction. And the mobility epoch lengths 𝑇
𝑒
are

independently exponentially distributedwithmean 1/𝜆
𝑒
.The

probability distribution function can be expressed as

𝑀
𝑒
(𝑥) = 𝑃 (𝑇

𝑒
≤ 𝑥) = 1 − 𝑒

−𝜆𝑒𝑥. (2)

During each epoch, the mobile direction of CU
𝑐
is

uniformly distributed over [0, 2𝜋) and the speed of CU
𝑐
is

uniformly distributed over [0, Vmax]. We assume mobility is
uncorrelated among all the CUs in a network. And it is
reasonable to assume that epoch length, speed, and direction
are uncorrelated in the model. Figure 2 shows a mobility
trajectory of one given CU

𝑐
as an example.

Definition 1. Given a licensed spectrum 𝑐
𝑝
and an instanta-

neous time 𝑡, the instantaneous spectrum availability ISA𝑐
𝑝
(𝑡)

for one CU
𝑐
can be defined as

ISA𝑐
𝑝
(𝑡) =

{{

{{

{

−1 𝐷
𝑝,
𝑐

(𝑡) < 𝑅
𝑝
+ 𝑟
𝑐
∩ (𝛼
𝑝
(𝑡) = −1)

1 𝐷
𝑝,
𝑐

(𝑡) < 𝑅
𝑝
+ 𝑟
𝑐
∩ (𝛼
𝑝
(𝑡) = 1)

1 𝐷
𝑝,
𝑐

(𝑡) ≥ 𝑅
𝑝
+ 𝑟
𝑐
.

(3)

ISA𝑐
𝑝
(𝑡) = 1 means that licensed spectrum 𝑐

𝑝
is instan-

taneously available at 𝑡 for CU
𝑐
and ISA𝑐

𝑝
(𝑡) = −1 means
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Figure 1: System model of a mobile CRN.
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Figure 2: A mobility trajectory example for one given CU
𝑐
.

that licensed spectrum 𝑐
𝑝
is not instantaneous available at

𝑡 for CU
𝑐
, where 𝐷

𝑝,
𝑐

(𝑡) represents the Euclidean distance
between PU

𝑝
and CU

𝑐
at 𝑡. 𝛼

𝑝
(𝑡) represents the time-varying

working activity of PU
𝑝
, denoted as

𝛼
𝑝
(𝑡) = {

1 PU
𝑝

is idle at 𝑡
−1 PU

𝑝
is busy at 𝑡.

(4)

Definition 2. Given a licensed spectrum 𝑐
𝑝
and a continuous

period 𝑇, the continuous spectrum availability CSA𝑐
𝑝
(𝑇) for

one CU
𝑐
can be defined as

CSA𝑐
𝑝
(𝑇) = {(𝑐, 𝑝) | ISA𝑐

𝑝
(𝑡) = 1 from 𝑡

0
to 𝑡
0
+ 𝑇} , (5)

where 𝑡
0
is a given reference time. CSA𝑐

𝑝
(𝑇) = 1 means that

spectrum 𝑐
𝑝
is available to CU

𝑐
not only at 𝑡

0
but also at

any time between 𝑡
0
and 𝑡
0
+ 𝑇. CSA𝑐

𝑝
(𝑇) = 1 means that

spectrum 𝑐
𝑝
is not available to CU

𝑐
at some time between

𝑡
0
and 𝑡
0
+ 𝑇. In practice, 𝑇 could be a slot or some slots,

during which CU
𝑐
can achieve activation and access to the

network. Apparently, we focus more on CSA𝑐
𝑝
(𝑇) because

a continuous time period (or a short-time duration) rather
than an instantaneous time is more meaningful for OSA or
resource allocation in CRN.

Our objective is to give out the spectrum mobility
prediction for all the CUs based on the joint theoretical
analysis of CUs’ mobility and PUs’ working activities under
the mobile model. Obviously, it is a complicated nonlinear
problem which cannot be solved by normal algorithm. In
this paper, a new prediction scheme is presented to solve this
problem by SVM.

2.2. Support Vector Machine. As a highly competitive learn-
ing method, SVM is gaining popularity in many fields
based on the statistical learning theory [30–32]. SVM adopts
structural risk minimization principle which has been shown
superior to empirical riskminimization principle used by tra-
ditional neural networks [24]. Moreover, the generalization
ability of SVM is strong [33]. SVM is initially used to solve
the classification problem. Assume there is 𝑙 training sample
data denoted as

𝐷 = {(x
𝑖
, 𝑦
𝑖
) | x
𝑖
∈ 𝑅
𝑑

}
𝑙

𝑖=1

, (6)

where x
𝑖
is an input vector containing multiple features. 𝑦

𝑖
∈

{−1, +1} is a class indicator. 𝑑 is the dimension of sample data.
Optimal hyper plane is constructed as

w ⋅ x
𝑖
+ 𝑏 = 0, (7)

where w are weights and 𝑏 is offset argument. The samples
on 𝐻1 and 𝐻2 are support vectors. The according equations
are w ⋅ x

𝑖
+ 𝑏 = +1 and w ⋅ x

𝑖
+ 𝑏 = −1, respectively. So, the

classificationmargin is 2/‖𝜔‖. For our nonlinear problem, the
representation of the sample data has to be changed from the
original input space to a higher dimensional space which is
referred to as the feature space. This quadratic programming
(QP) problem can be expressed as

min Φ (w, 𝜉) =
1

2
‖w‖
2

+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖
,

s.t. 𝑦
𝑖
[(w ⋅ x

𝑖
) + 𝑏] ≥ 1 − 𝜉

𝑖
, 𝑖 = 1 : 𝑙.

(8)

𝜉
𝑖
is relaxation factor and𝐶 is cost parameter which is a given

value. A Lagrange function is constructed to solve the above
constrained optimization problem (8) as follows:

𝑄 (w, 𝑏, 𝛼, 𝛽, 𝜉)

=
1

2
‖w‖
2

+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖

−

𝑙

∑

𝑖=1

𝛼
𝑖
[𝑐
𝑖
(x
𝑖
⋅ w + 𝑏) − 1 + 𝜉

𝑖
] −

𝑙

∑

𝑖=1

𝛽
𝑖
𝜉
𝑖
,

(9)
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where 𝛼
𝑖
and 𝛽

𝑖
are Lagrange multipliers. In order to get

the solution of the original problem, we calculate the partial
derivative for different variables as

𝜕𝑄 (w, 𝑏, 𝛼, 𝛽, 𝜉)

𝜕w
= w −

𝑙

∑

𝑖=1

𝛼
𝑖
𝑐
𝑖
x
𝑖
= 0,

𝜕𝑄 (w, 𝑏, 𝛼, 𝛽, 𝜉)

𝜕𝑏
=

𝑙

∑

𝑖=1

𝛼
𝑖
𝑐
𝑖
= 0,

𝜕𝑄 (w, 𝑏, 𝛼, 𝛽, 𝜉)

𝜕𝜉
= 𝐶 − 𝛼

𝑖
− 𝛽
𝑖
= 0.

(10)

Based on (10), the original optimization problem shown
in (9) is transformed to a dual optimization problem as

max 𝐽 (𝛼) =

𝑙

∑

𝑖=1

𝛼
𝑖
−

1

2

𝑙

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑐
𝑖
𝑐
𝑗
𝐾(x
𝑖
, x
𝑗
) ,

s.t. 0 ≤ 𝛼
𝑖
≤ 𝐶,

𝑙

∑

𝑖=1

𝛼
𝑖
𝑐


𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑙.

(11)

𝐾(x
𝑖
, x
𝑗
) is a chosen kernel function which will be discussed

later in the prediction scheme section. Thus, we can obtain
the optimization w∗

w∗ =
𝑙

∑

𝑖=1

𝛼
∗

𝑖
𝑐


𝑖
x
𝑖
, (12)

where 𝛼∗
𝑖
can be solved by (11). And 𝑏 which does not appear

in the dual problem can be calculated through the original
constraint. Consider

𝑏
∗

=
1

2
[max
𝑐𝑖=−1

(⟨w∗ ⋅ x
𝑖
⟩) +min

𝑐𝑖=+1
(⟨w∗ ⋅ x

𝑖
⟩)] . (13)

Therefore, the final prediction output expression can be
written as

𝐷(𝑙


) = sign(

𝑙

∑

𝑖=1

𝛼
𝑖
𝑐
𝑖
𝐾(x
𝑖
, x
𝑗
) + 𝑏) . (14)

3. Joint Feature Vector Extraction

The common idea is utilizing SVM via domain information
such as location and speed directly. However, it does not
make good use of the CUs’ mobility characteristic and PUs’
working activities information. The traditional methods,
thus, result in low prediction accuracy performance, which
will be discussed in the simulation part.

In this section, CSA𝑐
𝑝
(𝑇) as joint feature vector is

extracted for SVM through theoretical deduction. Obviously,
CSA𝑐
𝑝
(𝑇) is related to a period 𝑇. In this paper, we focus

mainly on spectrum allocation interval time 𝑇
𝑐
which is

meaningful for a real CRN. Two situations need to be
investigated in order to derive CSA𝑐

𝑝
(𝑇
𝑐
): (1) CU

𝑐
is in the

coverage area of PU
𝑝
at 𝑡
0
and (2) CU

𝑐
is not in the coverage

area of PU
𝑝
at 𝑡
0
, respectively.

For the first situation, let CU
𝑐
predict a period 𝑇

𝑝
during

which CU
𝑐
can use 𝑐

𝑝
continuously. And our idea is to derive

CSA𝑐
𝑝
(𝑇
𝑐
) through computing CSA𝑐

𝑝
(𝑇
𝑝
). In fact, CSA𝑐

𝑝
(𝑇
𝑝
)

includes two main situations: (1) 𝐶
1
(𝑇
𝑝
) representing the

situation that CU
𝑐
does not move into PU

𝑝
coverage scope

between 𝑡
0
and 𝑡

0
+ 𝑇
𝑝
and (2) 𝐶

2
(𝑇
𝑝
) representing the

situation that CU
𝑐
moves into PU

𝑝
coverage scope at 𝑡

0
+

𝑇
𝑠
(0 ≤ 𝑇

𝑠
≤ 𝑇
𝑝
)while the activity of PU

𝑝
is inactive between

𝑡
0
+ 𝑇
𝑠
and 𝑡
0
+ 𝑇
𝑝
. We believe 𝐶

1
(𝑇
𝑝
) and 𝐶

2
(𝑇
𝑝
) dominate

the main situations although other complicated situations as
small probability events also exist.

𝐶
1
(𝑇
𝑝
) also contains two parts: (1) 𝑃out1 representing the

situation that the velocity of CU
𝑐
does not change from 𝑡

0

to 𝑡
0
+ 𝑇
𝑝
and (2) 𝑃out2 representing the other situations.

Consider

𝐶
1
(𝑇
𝑝
) = 𝑃out1 + 𝑃out2. (15)

From (2), 𝑃out1 can be easily obtained as

𝑃out1 = 1 − 𝑀
𝑒
(𝑇
𝑝
) = 𝑒
−𝜆𝑒𝑇𝑝 . (16)

It is difficult to get the accurate value of 𝑃out2 because we
cannot know the velocity change information (the change in
time, speed, and direction) at any time for CU

𝑐
. However, the

approximate value 𝐸(𝑃out2) by estimating 𝑃out2 can be derived
[34]. When 𝑇

𝑝
< 𝑇
𝑐
, CU
𝑐
has to change its movement speed

and direction (or any of them) before 𝑡
0
+ 𝑇
𝑝
, which makes

CU
𝑐
away from PU

𝑝
. Therefore, CSA𝑐

𝑝
(𝑇
𝑐
) can be obtained as

CSA𝑐
𝑝
(𝑇
𝑐
) ≈ 𝐸 (𝑃out2)

=
1

𝜆
𝑒
𝑇
𝑝

+ 𝜀
𝑎

+ 𝑒
−𝜆𝑒𝑇𝑝 (

1

2
𝑝away𝜆𝑒𝑇𝑝 −

1

𝜆
𝑒
𝑇
𝑝

− 𝜀
𝑎
− 1) ,

(17)

where 𝑝away denotes the probability that CU
𝑐
moves away

fromPU
𝑝
after the first velocity (speed and direction) change.

In practice, 𝜀
𝑎

≥ 0 represents other situations (small
probability events except the situations discussed above). For
example, CU

𝑐
changes its speed three times while CU

𝑐
still

does not move into PU
𝑝
’s coverage scope from 𝑡

0
to 𝑡
0
+ 𝑇
𝑐
.

𝜀
𝑎
is used to balance the equation and we will discuss it later.
When 𝑇

𝑝
≥ 𝑇
𝑐
, CSA𝑐

𝑝
(𝑇
𝑐
) for CU

𝑐
can be obtained as

CSA𝑐
𝑝
(𝑇
𝑐
) ≈ 𝐶
1
(𝑇
𝑐
) + 𝐸 (𝑃out2)

=
1

𝜆
𝑒
𝑇
𝑐

+ 𝜀
𝑎
+ 𝑒
−𝜆𝑒𝑇𝑐 (

1

2
𝑝away𝜆𝑒𝑇𝑐 −

1

𝜆
𝑒
𝑇
𝑐

− 𝜀
𝑎
) .

(18)

For the second situation, the movement of CU
𝑐
and the

working state of PU
𝑝
should be investigated simultaneously.
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Different from the first situation, we believe that the predic-
tion of the idle state for PU

𝑝
is more essential due to the

original position of CU
𝑐
. Similar to the first situation, let CU

𝑐

predict a continuous period 𝑇
out
𝑝

that CU
𝑐
will not move out

of PU
𝑝
’s coverage boundary from 𝑡

0
to 𝑡
0
+ 𝑇

out
𝑝

. It is noted
that 𝑇out

𝑝
is different from the 𝑇

𝑝
mentioned above.

When 𝑇
out
𝑝

< 𝑇
𝑐
, CSA𝑐

𝑝
(𝑇
𝑐
) for CU

𝑐
can be obtained as

CSA𝑐
𝑝
(𝑇
𝑐
) = 𝑝in ⋅ ∫

𝑡0+𝑇
out
𝑝

𝑡0

𝑓OFF (𝑡, 𝛽𝑝) 𝑑𝑡 + 𝜀in. (19)

Similar to 𝜀
𝑎
above, 𝜀in is used to denote all the other

small probability events. ∫𝑡0+𝑇
out
𝑝

𝑡0

𝑓OFF(𝑡)𝑑𝑡 represents the idle
probability of 𝑐

𝑝
between 𝑡

0
and 𝑡
0
+ 𝑇

out
𝑝

. 𝑝in represents the
probability that CU

𝑐
moves out of PU

𝑝
coverage boundary

before 𝑡
0
+ 𝑇
𝑝
. 𝑝in consists of two parts. 𝑃in1 denotes the

situation that the velocity of CU
𝑐
remains unchanged from

𝑡
0
to 𝑡
0
+𝑇
𝑝
. And 𝑃in2 denotes the other situations. 𝑃in can be

easily obtained as

𝑃in =
1

𝜆
𝑒
𝑇out
𝑝

+ 𝜀
𝑏
+ 𝑒
−𝜆𝑒𝑇𝑝 (

1

2
𝑝
𝑏
𝜆
𝑒
𝑇
out
𝑝

−
1

𝜆
𝑒
𝑇out
𝑝

− 𝜀
𝑏
) ,

(20)

where 𝜀
𝑏

≥ 0 tries to represent all the other situations. 𝑝
𝑏

represents the probability that CU
𝑐
moves away from PU

𝑝

after the first change in velocity. According to (1), (19), and
(20), CSA𝑐

𝑝
(𝑇
𝑐
) for CU

𝑐
can be obtained as

CSA𝑐
𝑝
(𝑇
𝑐
)

= (
1

𝜆
𝑒
𝑇out
𝑝

+ 𝜀
𝑏
+ 𝑒
−𝜆𝑒𝑇

out
𝑝 (

1

2
𝑝
𝑏
𝜆
𝑒
𝑇
out
𝑝

−
1

𝜆
𝑒
𝑇out
𝑝

− 𝜀
𝑏
))

× (𝑒
−𝜇𝑝𝑡0 − 𝑒

−1/𝛽𝑝 ⋅(𝑡0+𝑇
out
𝑝
)

) + 𝜀in.

(21)

When𝑇
out
𝑝

≥ 𝑇
𝑐
, CSA𝑐
𝑝
(𝑇
𝑐
) ismainly determined by PU

𝑝
’s

working activity. Thus, CSA𝑐
𝑝
(𝑇
𝑐
) for CU

𝑐
can be obtained as

CSA𝑐
𝑝
(𝑇
𝑐
) = ∫

𝑡0+𝑇𝑐

𝑡0

𝑓OFF (𝑡, 𝛽𝑝) 𝑑𝑡 + 𝜀
𝑐

= 𝑒
−1/𝛽𝑝 ⋅𝑡0 − 𝑒

−1/𝛽𝑝 ⋅(𝑡0+𝑇𝑐) + 𝜀
𝑐
.

(22)

𝜀
𝑐
denotes all the other spectrum availability situations.Thus,

we obtain joint feature vector sets S𝑐
𝑖

= {CSA𝑐
𝑝
(𝑇
𝑐
)
𝑖
}
𝑙

𝑖=1

according to different situations based on (17), (18), (21), and
(22). Moreover, we can get the ultimate prediction expression
according to (14)

𝐷(𝑙


) = sign(

𝑚

∑

𝑖=1

𝛼
𝑖
𝑐


𝑖
𝐾(S𝑐
𝑖
, x
𝑗
) + 𝑏) ,

s.t. S𝑐
𝑖
= {CSA𝑐

𝑝
(𝑇
𝑐
)
𝑖
}
𝑙

𝑖=1

.

(23)

4. Spectrum Mobility Prediction Scheme

In this section, a new SVM-based spectrum mobility predic-
tion scheme is proposed based on the analysis and deduction
above.Themain steps of the proposed prediction scheme are
as follows.

Step 1 (CRN initialization). Initialize the original locations of
PUs and CUs randomly in the two-dimensional deployment
area.The coordinates of PUs are not changed once generated.
And PUs’ initial working states are stochastic. Initialize the
original speed, direction, and epoch lengths for each CU

𝑐
.

Assume themaximumvelocity forCUs is Vmax.The beginning
time of the system is set to 𝑡

0
. The parameters C, 𝜉

𝑖
of SVM

are initialized. Simulations are based on many times to make
sure of the accuracy of the result. In addition, set 𝑇

𝑐
, 𝛼
𝑝
, 𝛽
𝑝
,

𝜀away, 𝜀𝑎, 𝜀𝑏, 𝜀𝑐, 𝑝away, 𝑝𝑏𝜆𝑒, 𝑅𝑝, and 𝑟
𝑐
.

Step 2 (operate the mobile CRNmodel). PUs’ working states
obey an exponential on/off model. The PDF satisfies (1). And
the mobility of CUs follows the mobile model mentioned in
Section 2.1. The mobility epoch lengths are independently
exponentially distributed with mean 1/𝜆e. It is noted that
wrap-around technique is adopted during simulation in order
tomake the total number of SUs unchanged in the simulation
area.

Step 3 (calculate the joint feature vectors S𝑐
𝑖
for SVM).

Here, there are three situations to be investigated. Firstly, CU
𝑐

does notmove into the coverage of PU
𝑝
at 𝑡
0
granted that CU

𝑐

moves with Vmax towards PU
𝑝
. Secondly, CU

𝑐
is out of the

coverage of PU
𝑝
at 𝑡
0
, but CU

𝑐
may move into the coverage

of PU
𝑝
between 𝑡

0
and 𝑡
0
+𝑇
𝑐
. Finally, CU

𝑐
is in the coverage

of PU
𝑝
at 𝑡
0
. The detail calculation steps for S𝑐

𝑖
are described

in Algorithm 1.

Step 4 (execute prediction by SVM). Firstly, a SVM predic-
tionmodel is generated according to the history input vectors
S𝑐
𝑖
from Step 3. Secondly, put the data to be predicted into the

generated SVMmodel. Then, compute the prediction results
and record the results. Here, we adopt the RBF kernel as
mapping function for SVM in simulation. Because the RBF
kernel function tends to obtainmore robust results than other
kernels and can reduce numerical difficulties, the RBF kernel
function can be defined as

𝐾(x, y) = exp (−𝛾
x − y

2

) , 𝛾 > 0. (24)

Step 5 (the system resets). Execute Steps 1 to 4 until simu-
lation numbers are satisfied for testing. Then, the operation
stops. Compute the prediction performance: the prediction
accuracy rate 𝑝accuracy and the miss detection probability
𝑝miss. 𝑝accuracy is defined as

𝑝accuracy =


{𝑖 | 𝑦


𝑖
⋅ 𝑓 (x
𝑖
) > 0}



𝑙
× 100%, (25)

where {x
𝑖
}
𝑙


1
are testing data which are to be predicted.

And 𝑦


𝑖
∈ {−1, +1} are true labels for testing data. 𝑙

 is
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Calculation steps of Sci
if𝐷
𝑝,
𝑐

(𝑡
0
) ≥ 𝑅

𝑝
+ 𝑟
𝑐
+ Vmax ⋅ 𝑇𝑐

Spectrum 𝑐
𝑝
is available for CU

𝑐
.

else if 𝑅
𝑝
+ 𝑟
𝑐
≤ 𝐷
𝑝,
𝑐

(𝑡
0
) < 𝑅

𝑝
+ 𝑟
𝑐
+ Vmax ⋅ 𝑇𝑐

if 𝑇
𝑝
< 𝑇
𝑐

Calculate CSA𝑐
𝑝
(𝑇
𝑐
) by (17).

else
Calculate CSA𝑐

𝑝
(𝑇
𝑐
) by (18).

end
else if 0 < 𝐷

𝑝,
𝑐

(𝑡
0
) < 𝑅

𝑝
+ 𝑟
𝑐

if 𝑇out
𝑝

< 𝑇
𝑐

Calculate CSA𝑐
𝑝
(𝑇
𝑐
) by (21).

else
Calculate CSA𝑐

𝑝
(𝑇
𝑐
) by (22).

end
end
The vectors Sci are constructed for SVM.

Algorithm 1: Joint feature vectors extraction for CU
𝑐
.

the total number of testing data. 𝑓(x
𝑖
) ∈ {−1, +1} are

the predicted decision values. Here, {−1, +1} represents the
busy/idle working activity for a given PU. | ⋅ | represents the
element numbers for a given set. Actually, 𝑝accuracy reflects
the accuracy degree of spectrum prediction mechanism. The
higher the 𝑝accuracy is, the better the prediction effect is.

In addition, the miss prediction rate 𝑝miss (the rate that
the spectrum is predicted to be idle while it is actually busy) is
investigated for the proposed predictionmechanism. Because
𝑝miss can reflect the actual interference to the PUs to some
extent. The smaller the 𝑝miss is, the better the prediction
mechanism is. 𝑝miss can be defined as

𝑝miss =


{𝑖 | 𝑦


𝑖
⋅ 𝑓 (x
𝑖
) < 0, 𝑓 (x

𝑖
) = 1}



𝑙
× 100%. (26)

Note that 𝑝accuracy + 𝑝miss ≤ 100%.

5. Simulation Results and Analysis

In this section, experimental results of the prediction perfor-
mances for our proposed scheme are investigated. Simulation
parameters are shown in Table 1. We compare the pro-
posed prediction mechanism with the traditional prediction
schemes (SVM with initial location coordinates of CUs and
SVM with initial location coordinates and speed of CUs)
to evaluate the prediction performances under different
parameters.

Note that we assume 𝜀
𝑎
= 𝜀
𝑏
= 𝜀
𝑐
= 𝜀in = 𝜀away during

simulation for simplicity, because they are very small positive
values that are set to balance the according equations. In
addition, the total testing number is set to 1000 in order to
avoid randomness during simulation.

Figure 3 shows𝑝accuracy amongdifferent algorithms versus
training node number.The proposed SVM-SMP converges at
about 40 training data faster than SVM-location algorithm

Table 1: Simulation parameters.

Parameter Value
Total simulation number for testing 1000
Simulation area 5000m × 5000m
𝑅
𝑝

1000m
𝑟
𝑐

500m
Kernel function RBF kernel
𝐶 10
𝜉
𝑖

0.01
𝑇
𝑐

1 s∼15 s
𝛼
𝑝

1/3 s
𝛽
𝑝

1/3 s
𝑝
𝑎
= 𝑝
𝑏
= 𝑝away 0.5

𝜀
𝑎
= 𝜀
𝑏
= 𝜀
𝑐
= 𝜀in = 𝜀away 0∼0.2

1/𝜆
𝑒

3 s
CUs’ maximum velocity Vmax 0m/s∼50m/s
Total number of PUs 2
Total number of training CUs 20∼240
Total number of testing CUs 1000

(SVM-LA) with a convergent result at about 100 training
data. 𝑝accuracy of SVM-location-speed algorithm (SVM-LSA)
is much worse than the other comparison algorithms which
shows that the initial speed parameters have a bad effect on
the prediction performance. It is caused by the time-varying
characteristic of CUs’ velocity (speed or direction).

As shown in Figure 4, 𝑝accuracy decreases with the increas-
ing of 𝑇

𝑐
for the three different algorithms. 𝑝accuracy of the

proposed SVM-SMP is better than SVM-LA when 𝑇
𝑐
is

relatively small (1 ≤ 𝑇
𝑐
≤ 4.5). However, 𝑝accuracy of SVM-

SMP isworse than SVM-LAwhen𝑇
𝑐
is big enough (Tc > 4.5).

It is because the proposed prediction scheme is based on the
short-time prediction idea according to the feature vector
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Figure 3: Prediction accuracy rate 𝑝accuracy for CUs versus training
node number.
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Figure 4: Prediction accuracy rate 𝑝accuracy for CUs versus 𝑇𝑐.

extraction analysis in (17), (18), (21), and (22). Moreover,
wrap-around technique makes CUs stay at their original
positions with big probability at the simulation boundary.
Thus, SVM-LA decreases not that fast with the increasing of
𝑇
𝑐
. And the SVM-SMP works well when the prediction time

is not long and vice versa. Note that the short-time prediction
performance is mainly focused on in this paper because CR
itself should achieve communication in a very short time.

As illustrated in Figure 5, 𝑝miss is studied versus 𝑇
𝑐
for

different algorithms. 𝑝miss of SVM-SMP is nearly equal to 0
when 𝑇

𝑐
is small (1 ≤ 𝑇

𝑐
≤ 5), which is better than SVM-

LA. However, 𝑝miss of SVM-SMP increases very fast when
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Figure 5: Miss prediction rate 𝑝miss for CUs versus 𝑇𝑐.

𝑇
𝑐
is big enough. Figure 5 shows the good short-time miss

prediction rate characteristics of the new algorithm which is
very essential to CR.

In Figures 6 and 7,𝑝accuracy and𝑝miss versus Vmax are inves-
tigated between SVM-SMP and SVM-LA. From Figure 6,
𝑝accuracy of SVM-SMP is better than that of SVM-LAwhen 1 ≤

𝑇
𝑐
≤ 4 s. However, 𝑝accuracy of SVM-SMP is worse than that of

SVM-LA when 𝑇
𝑐
= 5 s and Vmax > 42m/s. It shows that the

proposed SVM-SMP lose the advantages when the prediction
time and speed are too big simultaneously. As shown in
Figure 7, 𝑝miss of SVM-SMP is less than 0.1%. Comparatively,
𝑝miss of SVM-LA is approximately 1%. Thus, SVM-SMP
shows good 𝑝miss performance with Vmax changing.

In Figures 8 and 9, we investigate𝑝accuracy and𝑝miss versus
𝜆 between SVM-SMP and SVM-LA. From Figure 8, 𝑝accuracy
of SVM-SMP decreases obviously with the increasing of 𝜆
when Vmax is big (such as 50m/s). However, 𝑝accuracy of SVM-
SMP does not change very obviously with the increasing of
𝜆 when Vmax is small (such as 10m/s). It is due to the fact
that the bigger the 𝜆 is, the stronger the irregular movements
of CUs are. Thus, it is difficult for the prediction when CUs
are moving with high speed and strong irregular movements.
As shown in Figure 9, 𝑝miss of SVM-SMP is much better
than that of SVM-LA when Vmax is small (such as 10m/s,
30m/s). However, 𝑝miss of SVM-SMP is worse than that
of SVM-LA when Vmax = 50m/s and 𝜆 > 13, which
validates the performance degradation of the prediction
performance again when Vmax is relatively big with strong
irregular movements. It is because SVM-SMP is based on the
assumption of weak irregular movements for CUs.

In Figures 10 and 11, 𝑝accuracy and 𝑝miss versus 𝛽
𝑝
are

investigated for SVM-SMP and SVM-LA. In Figure 10,
𝑝accuracy of SVM-SMP is obviously better than 𝑝accuracy of
SVM-LA when the prediction time is short such as 1 s and
3 s. However, 𝑝accuracy of SVM-SMP is worse than 𝑝accuracy of
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Figure 6: Prediction accuracy rate 𝑝accuracy for CUs versus Vmax.
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Figure 7: Miss prediction rate 𝑝miss for CUs versus Vmax.

SVM-LA when the prediction duration time is 𝑇
𝑐
= 5 s and

the mean idle time is 𝛽
𝑝

< 4. In Figure 11, 𝑝miss of SVM-
SMP is nearly equal to 0, which is much better than SVM-LA.
In addition, the prediction performance (𝑝accuracy and 𝑝miss)
does not improve significantly for the two algorithmswith the
increasing of 𝛽

𝑝
when 𝛽

𝑝
is big enough according to Figures

10 and 11.
Figure 12 shows the impact of 𝜀on the prediction accuracy

rate 𝑝accuracy for SVM-SMP. When 𝜆 = 1, the maximum
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Figure 9: Miss prediction rate 𝑝miss for CUs versus 𝜆.

of 𝑝accuracy occurs at about 𝜀 = 0 which is relatively small.
With the increasing of 𝜆, the maximum value position of
𝑝accuracy moves to the right. When 𝜆 = 10, the maximum
of 𝑝accuracy occurs at about 𝜀 = 0.1. It is because the small
probability events happenmore times when SUs’ randomness
movements are strong (𝜆 is big). The bigger the 𝜆 is, the
bigger the maximum value position of 𝑝accuracy occurs for 𝜀.
Therefore, we can obtain better prediction performance by
adjusting 𝜀 for randomness movements of different strength.

As shown in Figure 13,miss prediction rate𝑝miss is studied
versus 𝜀 for SVM-SMP. When 𝜆 = 5 and 𝜆 = 10, the
minimum of 𝑝miss occurs at about 𝜀 = 0.07 and 𝜀 = 0.1,
respectively. It shows that different optimal 𝜀 corresponds to
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Figure 11: Miss prediction rate 𝑝miss for CUs versus 𝜇.

SUs’ randomness movements of different strength for 𝑝miss.
The simulation results further confirm the impact of 𝜀 on the
prediction accuracy rate in Figure 12.

6. Conclusions

In this paper, a new spectrum mobility prediction algorithm
is proposed in mobile CRNs. SVM theory is adopted to
improve the spectrum mobility prediction performance,
which takes into account time- and space-varying character-
istics together. Moreover, new extracted feature vectors based
on the theoretical analysis are input into SVM. Simulation
results confirm that the convergence speed of our SVM-SMP
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Figure 12: Prediction accuracy rate 𝑝accuracy for CUs versus 𝜀.
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Figure 13: Miss prediction rate 𝑝miss for CUs versus 𝜀.

is faster than SVM-LA and SVM-LSA. Meanwhile, SVM-
SMP shows better short-time prediction performance than
SVM-LA and SVM-LSA, which is essential to real mobile
CRNs. In addition, the prediction performance degradation
caused by SUs’ high speed and strong randomness move-
ments can be made up by choosing the proper parameters.

As known to us, how to choose the best parameters (𝐶 and
𝜉
𝑖
) quickly is still an open problem in SVM. We will further

analyze the impact of 𝜀 on prediction performance. It leaves
us to investigate in the future.
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