1,066 research outputs found

    Optimal time sharing in underlay cognitive radio systems with RF energy harvesting

    Full text link
    Due to the fundamental tradeoffs, achieving spectrum efficiency and energy efficiency are two contending design challenges for the future wireless networks. However, applying radio-frequency (RF) energy harvesting (EH) in a cognitive radio system could potentially circumvent this tradeoff, resulting in a secondary system with limitless power supply and meaningful achievable information rates. This paper proposes an online solution for the optimal time allocation (time sharing) between the EH phase and the information transmission (IT) phase in an underlay cognitive radio system, which harvests the RF energy originating from the primary system. The proposed online solution maximizes the average achievable rate of the cognitive radio system, subject to the ε\varepsilon-percentile protection criteria for the primary system. The optimal time sharing achieves significant gains compared to equal time allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on Communications (IEEE ICC 2015), 8-12 June 2015, London, U

    Difference Antenna Selection and Power Allocation for Wireless Cognitive Systems

    Full text link
    In this paper, we propose an antenna selection method in a wireless cognitive radio (CR) system, namely difference selection, whereby a single transmit antenna is selected at the secondary transmitter out of MM possible antennas such that the weighted difference between the channel gains of the data link and the interference link is maximized. We analyze mutual information and outage probability of the secondary transmission in a CR system with difference antenna selection, and propose a method of optimizing these performance metrics of the secondary data link subject to practical constraints on the peak secondary transmit power and the average interference power as seen by the primary receiver. The optimization is performed over two parameters: the peak secondary transmit power and the difference selection weight δ∈[0,1]\delta\in [0, 1]. We show that, difference selection using the optimized parameters determined by the proposed method can be, in many cases of interest, superior to a so called ratio selection method disclosed in the literature, although ratio selection has been shown to be optimal, when impractically, the secondary transmission power constraint is not applied. We address the effects that the constraints have on mutual information and outage probability, and discuss the practical implications of the results.Comment: 29 pages, 9 figures, to be submitted to IEEE Transactions on Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Effective Capacity in Cognitive Radio Broadcast Channels

    Full text link
    In this paper, we investigate effective capacity by modeling a cognitive radio broadcast channel with one secondary transmitter (ST) and two secondary receivers (SRs) under quality-of-service constraints and interference power limitations. We initially describe three different cooperative channel sensing strategies with different hard-decision combining algorithms at the ST, namely OR, Majority, and AND rules. Since the channel sensing occurs with possible errors, we consider a combined interference power constraint by which the transmission power of the secondary users (SUs) is bounded when the channel is sensed as both busy and idle. Furthermore, regarding the channel sensing decision and its correctness, there exist possibly four different transmission scenarios. We provide the instantaneous ergodic capacities of the channel between the ST and each SR in all of these scenarios. Granting that transmission outage arises when the instantaneous transmission rate is greater than the instantaneous ergodic capacity, we establish two different transmission rate policies for the SUs when the channel is sensed as idle. One of these policies features a greedy approach disregarding a possible transmission outage, and the other favors a precautious manner to prevent this outage. Subsequently, we determine the effective capacity region of this channel model, and we attain the power allocation policies that maximize this region. Finally, we present the numerical results. We first show the superiority of Majority rule when the channel sensing results are good. Then, we illustrate that a greedy transmission rate approach is more beneficial for the SUs under strict interference power constraints, whereas sending with lower rates will be more advantageous under loose interference constraints.Comment: Submitted and Accepted to IEEE Globecom 201

    Band Allocation for Cognitive Radios with Buffered Primary and Secondary Users

    Full text link
    In this paper, we study band allocation of Ms\mathcal{M}_s buffered secondary users (SUs) to Mp\mathcal{M}_p orthogonal primary licensed bands, where each primary band is assigned to one primary user (PU). Each SU is assigned to one of the available primary bands with a certain probability designed to satisfy some specified quality of service (QoS) requirements for the SUs. In the proposed system, only one SU is assigned to a particular band. The optimization problem used to obtain the stability region's envelope (closure) is shown to be a linear program. We compare the stability region of the proposed system with that of a system where each SU chooses a band randomly with some assignment probability. We also compare with a fixed (deterministic) assignment system, where only one SU is assigned to one of the primary bands all the time. We prove the advantage of the proposed system over the other systems.Comment: Accepted in WCNC 201
    • …
    corecore