5 research outputs found

    Geometric modeling for computer aided design

    Get PDF
    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes

    SEE-TREND: SEcurE Traffic-Related EveNt Detection in Smart Communities

    Get PDF
    It has been widely recognized that one of the critical services provided by Smart Cities and Smart Communities is Smart Mobility. This paper lays the theoretical foundations of SEE-TREND, a system for Secure Early Traffic-Related EveNt Detection in Smart Cities and Smart Communities. SEE-TREND promotes Smart Mobility by implementing an anonymous, probabilistic collection of traffic-related data from passing vehicles. The collected data are then aggregated and used by its inference engine to build beliefs about the state of the traffic, to detect traffic trends, and to disseminate relevant traffic-related information along the roadway to help the driving public make informed decisions about their travel plans, thereby preventing congestion altogether or mitigating its nefarious effects

    Vehicular Crowdsourcing for Congestion Support in Smart Cities

    Get PDF
    Under present-day practices, the vehicles on our roadways and city streets are mere spectators that witness traffic-related events without being able to participate in the mitigation of their effect. This paper lays the theoretical foundations of a framework for harnessing the on-board computational resources in vehicles stuck in urban congestion in order to assist transportation agencies with preventing or dissipating congestion through large-scale signal re-timing. Our framework is called VACCS: Vehicular Crowdsourcing for Congestion Support in Smart Cities. What makes this framework unique is that we suggest that in such situations the vehicles have the potential to cooperate with various transportation authorities to solve problems that otherwise would either take an inordinate amount of time to solve or cannot be solved for lack for adequate municipal resources. VACCS offers direct benefits to both the driving public and the Smart City. By developing timing plans that respond to current traffic conditions, overall traffic flow will improve, carbon emissions will be reduced, and economic impacts of congestion on citizens and businesses will be lessened. It is expected that drivers will be willing to donate under-utilized on-board computing resources in their vehicles to develop improved signal timing plans in return for the direct benefits of time savings and reduced fuel consumption costs. VACCS allows the Smart City to dynamically respond to traffic conditions while simultaneously reducing investments in the computational resources that would be required for traditional adaptive traffic signal control systems

    A Survey of Enabling Technologies for Smart Communities

    Get PDF
    In 2016, the Japanese Government publicized an initiative and a call to action for the implementation of a Super Smart Society announced as Society 5.0. The stated goal of Society 5.0 is to meet the various needs of the members of society through the provisioning of goods and services to those who require them, when they are required and in the amount required, thus enabling the citizens to live an active and comfortable life. In spite of its genuine appeal, details of a feasible path to Society 5.0 are conspicuously missing. The first main goal of this survey is to suggest such an implementation path. Specifically, we define a Smart Community as a human-centric entity where technology is used to equip the citizenry with information and services that they can use to inform their decisions. The arbiter of this ecosystem of services is a Marketplace of Services that will reward services aligned with the wants and needs of the citizens, while discouraging the proliferation of those that are not. In the limit, the Smart Community we defined will morph into Society 5.0. At that point, the Marketplace of Services will become a platform for the co-creation of services by a close cooperation between the citizens and their government. The second objective and contribution of this survey paper is to review known technologies that, in our opinion, will play a significant role in the transition to Society 5.0. These technologies will be surveyed in chronological order, as newer technologies often extend old technologies while avoiding their limitations

    Geometric modeling for computer aided design

    Get PDF
    Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms
    corecore