166,934 research outputs found

    Optimal Order Convergence Implies Numerical Smoothness

    Full text link
    It is natural to expect the following loosely stated approximation principle to hold: a numerical approximation solution should be in some sense as smooth as its target exact solution in order to have optimal convergence. For piecewise polynomials, that means we have to at least maintain numerical smoothness in the interiors as well as across the interfaces of cells or elements. In this paper we give clear definitions of numerical smoothness that address the across-interface smoothness in terms of scaled jumps in derivatives [9] and the interior numerical smoothness in terms of differences in derivative values. Furthermore, we prove rigorously that the principle can be simply stated as numerical smoothness is necessary for optimal order convergence. It is valid on quasi-uniform meshes by triangles and quadrilaterals in two dimensions and by tetrahedrons and hexahedrons in three dimensions. With this validation we can justify, among other things, incorporation of this principle in creating adaptive numerical approximation for the solution of PDEs or ODEs, especially in designing proper smoothness indicators or detecting potential non-convergence and instability

    Optimal Rates for Random Fourier Features

    Full text link
    Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i) establishing optimal (in terms of the RFF dimension, and growing set size) performance guarantees in uniform norm, and (ii) presenting guarantees in LrL^r (1≤r<∞1\le r<\infty) norms. We also propose an RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.Comment: To appear at NIPS-201

    A Hybridized Weak Galerkin Finite Element Scheme for the Stokes Equations

    Full text link
    In this paper a hybridized weak Galerkin (HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced. The WG method uses weak functions and their weak derivatives which are defined as distributions. Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees. Different combination of polynomial spaces leads to different WG finite element methods, which makes WG methods highly flexible and efficient in practical computation. A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution. With this new feature, HWG method can be used to deal with jumps of the functions and their flux easily. Optimal order error estimate are established for the corresponding HWG finite element approximations for both {\color{black}primal variables} and the Lagrange multiplier. A Schur complement formulation of the HWG method is derived for implementation purpose. The validity of the theoretical results is demonstrated in numerical tests.Comment: 19 pages, 4 tables,it has been accepted for publication in SCIENCE CHINA Mathematics. arXiv admin note: substantial text overlap with arXiv:1402.1157, arXiv:1302.2707 by other author
    • …
    corecore