4 research outputs found

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlogΔ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlogΔ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201

    The Advice Complexity of a Class of Hard Online Problems

    Get PDF
    The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that log(1+(c1)c1/cc)n=Θ(n/c)\log\left(1+(c-1)^{c-1}/c^{c}\right)n=\Theta (n/c) bits of advice are necessary and sufficient (up to an additive term of O(logn)O(\log n)) to achieve a competitive ratio of cc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (TCS 2011) and B\"ockenhauer et al. (TCS 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halld\'orsson et al. (TCS 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c)\Theta (n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, B\"ockenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c)\Omega (n/c) and an upper bound of O((nlogc)/c)O((n\log c)/c) on the advice complexity. We improve on the upper bound by a factor of logc\log c. For the remaining problems, no bounds on their advice complexity were previously known.Comment: Full paper to appear in Theory of Computing Systems. A preliminary version appeared in STACS 201

    Low-Memory Algorithms for Online and W-Streaming Edge Coloring

    Full text link
    For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to sublinear in the input size but allows an edge's color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge-coloring. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Our results significantly improve upon the memory used by prior online algorithms while achieving an O(1)O(1)-competitive ratio. In particular, for nn-node graphs with maximum vertex-degree Δ\Delta under edge arrivals, we obtain an online O(Δ)O(\Delta)-coloring in O~(nΔ)\tilde{O}(n\sqrt{\Delta}) space. This is also the first W-streaming edge-coloring algorithm for O(Δ)O(\Delta)-coloring in sublinear memory. All prior works either used linear memory or ω(Δ)\omega(\Delta) colors. We also achieve a smooth color-space tradeoff: for any t=O(Δ)t=O(\Delta), we get an O(Δ(logΔ)2t)O(\Delta (\log \Delta)^2 t)-coloring in O~(nΔ/t)\tilde{O}(n\sqrt{\Delta/t}) space, improving upon the state of the art that used O~(nΔ/t)\tilde{O}(n\Delta/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.Comment: 32 pages, 1 figur

    Randomization can be as helpful as a glimpse of the future in online computation

    Get PDF
    We provide simple but surprisingly useful direct product theorems for proving lower bounds on online algorithms with a limited amount of advice about the future. As a consequence, we are able to translate decades of research on randomized online algorithms to the advice complexity model. Doing so improves significantly on the previous best advice complexity lower bounds for many online problems, or provides the first known lower bounds. For example, if nn is the number of requests, we show that: (1) A paging algorithm needs Ω(n)\Omega(n) bits of advice to achieve a competitive ratio better than Hk=Ω(logk)H_k=\Omega(\log k), where kk is the cache size. Previously, it was only known that Ω(n)\Omega(n) bits of advice were necessary to achieve a constant competitive ratio smaller than 5/45/4. (2) Every O(n1ε)O(n^{1-\varepsilon})-competitive vertex coloring algorithm must use Ω(nlogn)\Omega(n\log n) bits of advice. Previously, it was only known that Ω(nlogn)\Omega(n\log n) bits of advice were necessary to be optimal. For certain online problems, including the MTS, kk-server, paging, list update, and dynamic binary search tree problem, our results imply that randomization and sublinear advice are equally powerful (if the underlying metric space or node set is finite). This means that several long-standing open questions regarding randomized online algorithms can be equivalently stated as questions regarding online algorithms with sublinear advice. For example, we show that there exists a deterministic O(logk)O(\log k)-competitive kk-server algorithm with advice complexity o(n)o(n) if and only if there exists a randomized O(logk)O(\log k)-competitive kk-server algorithm without advice. Technically, our main direct product theorem is obtained by extending an information theoretical lower bound technique due to Emek, Fraigniaud, Korman, and Ros\'en [ICALP'09]
    corecore