10 research outputs found

    Delay-aware and power-efficient resource allocation in virtualized wireless networks

    Get PDF
    This paper proposes a delay-aware resource provisioning policy for virtualized wireless networks (VWNs) to minimize the total average transmit power while holding the minimum required average rate of each slice and maximum average packet transmission delay for each user. The proposed cross-layer optimization problem is inherently non-convex and has high computational complexity. To develop an efficient solution, we first transform cross-layer dependent constraints into physical layer dependent ones. Afterwards, we apply different convexification techniques based on variable transformations and relaxations, and propose an iterative algorithm to reach the optimal solution. Simulation results illustrate the effects of the required average packet transmission delay and minimum average slice rate on the total transmission power in VWN

    Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for downlink multicarrier transmission with a shared user equipment (UE)-side distributed antenna system (SUDAS) which utilizes both licensed and unlicensed frequency bands for improving the system throughput. The joint UE selection and transceiver processing matrix design is formulated as a non-convex optimization problem for the maximization of the end-to-end system throughput (bits/s). In order to obtain a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel. Subsequently, the optimization problem is converted to a scalar optimization problem for multiple parallel channels, which is solved by using an asymptotically optimal iterative algorithm. Simulation results illustrate that the proposed resource allocation algorithm for the SUDAS achieves an excellent system performance and provides a spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, Scotland, UK, May 201

    Joint Scheduling and Resource Allocation in OFDMA Downlink Systems via ACK/NAK Feedback

    Full text link
    In this paper, we consider the problem of joint scheduling and resource allocation in the OFDMA downlink, with the goal of maximizing an expected long-term goodput-based utility subject to an instantaneous sum-power constraint, and where the feedback to the base station consists only of ACK/NAKs from recently scheduled users. We first establish that the optimal solution is a partially observable Markov decision process (POMDP), which is impractical to implement. In response, we propose a greedy approach to joint scheduling and resource allocation that maintains a posterior channel distribution for every user, and has only polynomial complexity. For frequency-selective channels with Markov time-variation, we then outline a recursive method to update the channel posteriors, based on the ACK/NAK feedback, that is made computationally efficient through the use of particle filtering. To gauge the performance of our greedy approach relative to that of the optimal POMDP, we derive a POMDP performance upper-bound. Numerical experiments show that, for slowly fading channels, the performance of our greedy scheme is relatively close to the upper bound, and much better than fixed-power random user scheduling (FP-RUS), despite its relatively low complexity

    Optimal OFDMA Resource Allocation with Linear Complexity to Maximize Ergodic Weighted Sum Capacity

    No full text

    Resource allocation and flexible scheduling in wireless networks

    Get PDF

    Channel assembling and resource allocation in multichannel spectrum sharing wireless networks

    Get PDF
    Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy (Ph.D.) in Engineering, in the School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment, at the University of the Witwatersrand, Johannesburg, South Africa, 2017The continuous evolution of wireless communications technologies has increasingly imposed a burden on the use of radio spectrum. Due to the proliferation of new wireless networks applications and services, the radio spectrum is getting saturated and becoming a limited resource. To a large extent, spectrum scarcity may be a result of deficient spectrum allocation and management policies, rather than of the physical shortage of radio frequencies. The conventional static spectrum allocation has been found to be ineffective, leading to overcrowding and inefficient use. Cognitive radio (CR) has therefore emerged as an enabling technology that facilitates dynamic spectrum access (DSA), with a great potential to address the issue of spectrum scarcity and inefficient use. However, provisioning of reliable and robust communication with seamless operation in cognitive radio networks (CRNs) is a challenging task. The underlying challenges include development of non-intrusive dynamic resource allocation (DRA) and optimization techniques. The main focus of this thesis is development of adaptive channel assembling (ChA) and DRA schemes, with the aim to maximize performance of secondary user (SU) nodes in CRNs, without degrading performance of primary user (PU) nodes in a primary network (PN). The key objectives are therefore four-fold. Firstly, to optimize ChA and DRA schemes in overlay CRNs. Secondly, to develop analytical models for quantifying performance of ChA schemes over fading channels in overlay CRNs. Thirdly, to extend the overlay ChA schemes into hybrid overlay and underlay architectures, subject to power control and interference mitigation; and finally, to extend the adaptive ChA and DRA schemes for multiuser multichannel access CRNs. Performance analysis and evaluation of the developed ChA and DRA is presented, mainly through extensive simulations and analytical models. Further, the cross validation has been performed between simulations and analytical results to confirm the accuracy and preciseness of the novel analytical models developed in this thesis. In general, the presented results demonstrate improved performance of SU nodes in terms of capacity, collision probability, outage probability and forced termination probability when employing the adaptive ChA and DRA in CRNs.CK201

    Assignació de potència de baixa complexitat per sistemas OFDMA-multiantena

    Get PDF
    Projecte realitzat en col.laboració amb l'empresa Newcom++Aquest projecte presenta una nova tècnica de gestió de recursos en escenaris de broadcasting. Concretament gestiona l’accés dels usuaris mitjançant una assignació de potència utilitzant una implementació de baixa complexitat. A més, també se’ls assigna una prioritat en la velocitat per tal d’assolir una determinada QoS. Aquest projecte té una fàcil implementació en sistemes comercials ja coneguts que incorporin OFDMA
    corecore