639 research outputs found

    Generalized Adaptive Network Coding Aided Successive Relaying Based Noncoherent Cooperation

    No full text
    A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, it is unrealistic to expect that in addition to carrying out all the relaying functions, the relays could additionally estimate the source-to-relay channels. Hence noncoherent detection is employed in order to obviate the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection

    LDPC Code Design for Noncoherent Physical Layer Network Coding

    Full text link
    This work considers optimizing LDPC codes in the physical-layer network coded two-way relay channel using noncoherent FSK modulation. The error-rate performance of channel decoding at the relay node during the multiple-access phase was improved through EXIT-based optimization of Tanner graph variable node degree distributions. Codes drawn from the DVB-S2 and WiMAX standards were used as a basis for design and performance comparison. The computational complexity characteristics of the standard codes were preserved in the optimized codes by maintaining the extended irregular repeat-accumulate (eIRA). The relay receiver performance was optimized considering two modulation orders M = {4, 8} using iterative decoding in which the decoder and demodulator refine channel estimates by exchanging information. The code optimization procedure yielded unique optimized codes for each case of modulation order and available channel state information. Performance of the standard and optimized codes were measured using Monte Carlo simulation in the flat Rayleigh fading channel, and error rate improvements up to 1.2 dB are demonstrated depending on system parameters.Comment: Six pages, submitted to 2015 IEEE International Conference on Communication

    Cooperative strategies design based on the diversity and multiplexing tradeoff

    Get PDF
    This thesis focuses on designing wireless cooperative communication strategies that are either optimal or near-optimal in terms of the tradeoff between diversity and multiplexing gains. Starting from classical cooperative broadcast, multiple-access and relay channels with unit degree of freedom, to more general cooperative interference channels with higher degrees of freedom, properties of different network topologies are studied and their unique characteristics together with several advanced interference management techniques are exploited to design cooperative transmission strategies in order to enhance data rate, reliability or both at the same time. Moreover, various algorithms are proposed to solve practical implementation issues and performance is analyzed through both theoretical verifications and simulations
    corecore