1,196 research outputs found

    Bounding the Optimal Revenue of Selling Multiple Goods

    Full text link
    Using duality theory techniques we derive simple, closed-form formulas for bounding the optimal revenue of a monopolist selling many heterogeneous goods, in the case where the buyer's valuations for the items come i.i.d. from a uniform distribution and in the case where they follow independent (but not necessarily identical) exponential distributions. We apply this in order to get in both these settings specific performance guarantees, as functions of the number of items mm, for the simple deterministic selling mechanisms studied by Hart and Nisan [EC 2012], namely the one that sells the items separately and the one that offers them all in a single bundle. We also propose and study the performance of a natural randomized mechanism for exponential valuations, called Proportional. As an interesting corollary, for the special case where the exponential distributions are also identical, we can derive that offering the goods in a single full bundle is the optimal selling mechanism for any number of items. To our knowledge, this is the first result of its kind: finding a revenue-maximizing auction in an additive setting with arbitrarily many goods

    The Better Half of Selling Separately

    Full text link
    Separate selling of two independent goods is shown to yield at least 62% of the optimal revenue, and at least 73% when the goods satisfy the Myerson regularity condition. This improves the 50% result of Hart and Nisan (2017, originally circulated in 2012)

    Sequential item pricing for unlimited supply

    Get PDF
    We investigate the extent to which price updates can increase the revenue of a seller with little prior information on demand. We study prior-free revenue maximization for a seller with unlimited supply of n item types facing m myopic buyers present for k < log n days. For the static (k = 1) case, Balcan et al. [2] show that one random item price (the same on each item) yields revenue within a \Theta(log m + log n) factor of optimum and this factor is tight. We define the hereditary maximizers property of buyer valuations (satisfied by any multi-unit or gross substitutes valuation) that is sufficient for a significant improvement of the approximation factor in the dynamic (k > 1) setting. Our main result is a non-increasing, randomized, schedule of k equal item prices with expected revenue within a O((log m + log n) / k) factor of optimum for private valuations with hereditary maximizers. This factor is almost tight: we show that any pricing scheme over k days has a revenue approximation factor of at least (log m + log n) / (3k). We obtain analogous matching lower and upper bounds of \Theta((log n) / k) if all valuations have the same maximum. We expect our upper bound technique to be of broader interest; for example, it can significantly improve the result of Akhlaghpour et al. [1]. We also initiate the study of revenue maximization given allocative externalities (i.e. influences) between buyers with combinatorial valuations. We provide a rather general model of positive influence of others' ownership of items on a buyer's valuation. For affine, submodular externalities and valuations with hereditary maximizers we present an influence-and-exploit (Hartline et al. [13]) marketing strategy based on our algorithm for private valuations. This strategy preserves our approximation factor, despite an affine increase (due to externalities) in the optimum revenue.Comment: 18 pages, 1 figur

    Sampling and Representation Complexity of Revenue Maximization

    Full text link
    We consider (approximate) revenue maximization in auctions where the distribution on input valuations is given via "black box" access to samples from the distribution. We observe that the number of samples required -- the sample complexity -- is tightly related to the representation complexity of an approximately revenue-maximizing auction. Our main results are upper bounds and an exponential lower bound on these complexities

    The Dominance of Retail Stores

    Get PDF
    Most items are sold to consumers by retail stores. Stores have two features that distinguish them from auctions. First, the price is posted and a consumer who values the good at more than the posted price is sold the good. Second, the sale takes place as soon as the consumer decides to buy. In contrast, auctions have prices that are determined ex post and the potential consumer must wait until the auction is held to buy the good. Consequently, auctions result in false trading', where buyers sometimes pass up other valuable opportunities while waiting for the auction to occur or instead make undesired duplicate purchases. Retail stores dominate auctions when the good is perishable and/or becomes obsolete quickly, when the market is thin, and when close substitutes for the good are plentiful. These predictions are consistent with a number of observed phenomena.
    • …
    corecore