262 research outputs found

    Link Quality Control Mechanism for Selective and Opportunistic AF Relaying in Cooperative ARQs: A MLSD Perspective

    Full text link
    Incorporating relaying techniques into Automatic Repeat reQuest (ARQ) mechanisms gives a general impression of diversity and throughput enhancements. Allowing overhearing among multiple relays is also a known approach to increase the number of participating relays in ARQs. However, when opportunistic amplify-and-forward (AF) relaying is applied to cooperative ARQs, the system design becomes nontrivial and even involved. Based on outage analysis, the spatial and temporal diversities are first found sensitive to the received signal qualities of relays, and a link quality control mechanism is then developed to prescreen candidate relays in order to explore the diversity of cooperative ARQs with a selective and opportunistic AF (SOAF) relaying method. According to the analysis, the temporal and spatial diversities can be fully exploited if proper thresholds are set for each hop along the relaying routes. The SOAF relaying method is further examined from a packet delivery viewpoint. By the principle of the maximum likelihood sequence detection (MLSD), sufficient conditions on the link quality are established for the proposed SOAF-relaying-based ARQ scheme to attain its potential diversity order in the packet error rates (PERs) of MLSD. The conditions depend on the minimum codeword distance and the average signal-to-noise ratio (SNR). Furthermore, from a heuristic viewpoint, we also develop a threshold searching algorithm for the proposed SOAF relaying and link quality method to exploit both the diversity and the SNR gains in PER. The effectiveness of the proposed thresholding mechanism is verified via simulations with trellis codes.Comment: This paper has been withdrawn by the authors due to an improper proof for Theorem 2. To avoid a misleading understanding, we thus decide to withdraw this pape

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Maximizing Expected Achievable Rates for Block-Fading Buffer-Aided Relay Channels

    Full text link
    © 2002-2012 IEEE. In this paper, the long-term average achievable rate over block-fading buffer-aided relay channels is maximized using a hybrid scheme that combines three essential transmission strategies, which are decode-and-forward, compress-and-forward, and direct transmission. The proposed hybrid scheme is dynamically adapted based on the channel state information. The integration and optimization of these three strategies provide a more generic and fundamental solution and give better achievable rates than the known schemes in the literature. Despite the large number of optimization variables, the proposed hybrid scheme can be optimized using simple closed-form formulas that are easy to apply in practical relay systems. This includes adjusting the transmission rate and compression when compress-and-forward is the selected strategy based on the channel conditions. Furthermore, in this paper, the hybrid scheme is applied to three different models of the Gaussian block-fading buffer-aided relay channels, depending on whether the relay is half or full duplex and whether the source and the relay have orthogonal or non-orthogonal channel access. Several numerical examples are provided to demonstrate the achievable rate results and compare them to the upper bounds of the ergodic capacity for each one of the three channel models under consideration

    NOMA in Cooperative Communication Systems with Energy-Harvesting Nodes and Wireless Secure Transmission

    Get PDF
    In this paper, non-orthogonal multiple access (NOMA) in cooperative relay system is considered, where a source node communicates with a pair of energy harvesting (EH) user equipments through a multiple antennas relay node. A hybrid protocol is adopted at the relay, in which if the relay can successfully decode the signals, decode- and-forward (DF) protocol will be adopted to forward the signals to the users. Otherwise, amplify-and-forward (AF) protocol will be implemented. Assuming that the users adopt maximal ratio combining (MRC) to combine the received signals in the two cooperative phases, new explicit analytical expressions for the average sum-rate are derived when the relay works in, 1) AF mode, and 2) DF mode, in two scenarios when one user is the stronger in both cooperation phases, and when an alternative user is stronger in each phase. Then, the investigation is extended to the case where the relay is an untrusted node, and cooperative jamming technique is proposed to degrade the ability of the relay to decode the signals and enforce the relay to operate always in AF mode. For the untrusted relay scenario, new analytical expression for the average secrecy rate is derived. Monte Carlo simulations are provided to validate the analysis. The simulation results reveal that the location of the relay is the key parameter to achieve the best performance

    Efficient Power Allocation Schemes for Hybrid Decode-Amplify-Forward Relay Based Wireless Cooperative Network

    Get PDF
    Cooperative communication in various wireless domains, such as cellular networks, sensor networks and wireless ad hoc networks, has gained significant interest recently. In cooperative network, relays between the source and the destination, form a virtual MIMO that creates spatial diversity at the destination, which overcomes the fading effect of wireless channels. Such relay assisted schemes have potential to increase the channel capacity and network coverage. Most current research on cooperative communication are focused broadly on efficient protocol design and analysis, resource allocation, relay selection and cross layer optimization. The first part of this research aims at introducing hybrid decode-amplify-forward (HDAF) relaying in a distributed Alamouti coded cooperative network. Performance of such adaptive relaying scheme in terms of symbol error rate (SER), outage probability and average channel capacity is derived theoretically and verified through simulation based study. This work is further extended to a generalized multi HDAF relaying cooperative frame work. Various efficient power allocation schemes such as maximized channel capacity based, minimized SER based and total power minimization based are proposed and their superiority in performance over the existing equal power allocation scheme is demonstrated in the simulation results. Due to the broadcast nature of wireless transmission, information privacy in wireless networks becomes a critical issue. In the context of physical layer security, the role of multi HDAF relaying based cooperative model with control jamming and multiple eavesdroppers is explored in the second part of the research. Performance evaluation parameters such as secrecy rate, secrecy outage and intercept probability are derived theoretically. Further the importance of the proposed power allocation schemes in enhancing the secrecy performance of the network in the presence of multiple eavesdroppers is studied in detail through simulation based study and analysis. For all the proposed power allocation schemes in this research, the optimization problems are defined under total power constraint and are solved using Lagrange multiplier method and also evolutionary algorithms such as Differential evolution and Invasive Weed Optimization are employed. Monte Carlo simulation based study is adopted throughout the research. It is concluded that HDAF relaying based wireless cooperative network with optimal power allocation schemes offers improved and reliable performance compared to conventional amplify forward and decode forward relaying schemes. Above research contributions will be applicable for future generation wireless cooperative networks

    Joint CFO and channel estimation for CP-OFDM modulated two-way relay networks

    Get PDF
    In this paper, we study the problem of joint carrier frequency offset (CFO) and channel estimation for amplify-andforward (AF) two-way relay network (TWRN) that comprises two source terminals and one relay node. Both the system design and the estimation problem become more challenging when CFO is non-zero in a frequency-selective environment, as compared to the conventional point-to-point communication systems. By introducing some redundancy, we propose a cyclic prefix (CP) based OFDM modulation for TWRN that is capable of maintaining the advantage of using multi-carrier transmission and at the same time facilitates the system initialization, e.g., synchronization and channel estimation. We then apply a least square (LS) approach to solve the estimation problem. The approximated Cramér-Rao Bound (CRB) has been derived as the performance benchmark of the proposed estimator. Finally, simulations are provided to corroborate the theoretical studies. ©2010 IEEE.published_or_final_versionThe IEEE International Conference on Communications (ICC 2010), Cape Town, South Africa, 23-27 May 2010. In Proceedings of the IEEE International Conference on Communications, 2010, p. 1-
    corecore