913 research outputs found

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Detection of replay attacks in cyber-physical systems using a frequency-based signature

    Get PDF
    This paper proposes a frequency-based approach for the detection of replay attacks affecting cyber-physical systems (CPS). In particular, the method employs a sinusoidal signal with a time-varying frequency (authentication signal) into the closed-loop system and checks whether the time profile of the frequency components in the output signal are compatible with the authentication signal or not. In order to carry out this target, the couplings between inputs and outputs are eliminated using a dynamic decoupling technique based on vector fitting. In this way, a signature introduced on a specific input channel will affect only the output that is selected to be associated with that input, which is a property that can be exploited to determine which channels are being affected. A bank of band-pass filters is used to generate signals whose energies can be compared to reconstruct an estimation of the time-varying frequency profile. By matching the known frequency profile with its estimation, the detector can provide the information about whether a replay attack is being carried out or not. The design of the signal generator and the detector are thoroughly discussed, and an example based on a quadruple-tank process is used to show the application and effectiveness of the proposed method.Peer ReviewedPostprint (author's final draft

    Design of multiplicative watermarking against covert attacks

    Full text link
    This paper addresses the design of an active cyberattack detection architecture based on multiplicative watermarking, allowing for detection of covert attacks. We propose an optimal design problem, relying on the so-called output-to-output l2-gain, which characterizes the maximum gain between the residual output of a detection scheme and some performance output. Although optimal, this control problem is non-convex. Hence, we propose an algorithm to design the watermarking filters by solving the problem suboptimally via LMIs. We show that, against covert attacks, the output-to-output l2-gain is unbounded without watermarking, and we provide a sufficient condition for boundedness in the presence of watermarks.Comment: 6 page conference paper accepted to the 60th IEEE Conference on Decision and Contro

    Adaptive Approximation-Based Control for Nonlinear Systems: A Unified Solution with Accurate and Inaccurate Measurements

    Full text link
    A unified solution to adaptive approximation-based control for nonlinear systems with accurate and inaccurate state measurement is synthesized in this study. Starting from the standard adaptive approximation-based controller with accurate state measurement, its corresponding physical interpretation, stability conclusion, and learning ability are rigorously addressed when facing additive measurement inaccuracy, and explicit answers are obtained in the framework of both controller matching and system matching. Finally, it proves that, with a certain condition, the standard adaptive approximation-based controller works as a unified solution for the cases with accurate and inaccurate measurement, and the solution can be extended to the nonlinear system control problems with extra unknown dynamics or faults in actuator and/or process dynamics. A single-link robot arm example is used for the simulation demonstration of the unified solution
    • …
    corecore