7,129 research outputs found

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201

    Hashmod: A Hashing Method for Scalable 3D Object Detection

    Full text link
    We present a scalable method for detecting objects and estimating their 3D poses in RGB-D data. To this end, we rely on an efficient representation of object views and employ hashing techniques to match these views against the input frame in a scalable way. While a similar approach already exists for 2D detection, we show how to extend it to estimate the 3D pose of the detected objects. In particular, we explore different hashing strategies and identify the one which is more suitable to our problem. We show empirically that the complexity of our method is sublinear with the number of objects and we enable detection and pose estimation of many 3D objects with high accuracy while outperforming the state-of-the-art in terms of runtime.Comment: BMVC 201

    Using Apache Lucene to Search Vector of Locally Aggregated Descriptors

    Full text link
    Surrogate Text Representation (STR) is a profitable solution to efficient similarity search on metric space using conventional text search engines, such as Apache Lucene. This technique is based on comparing the permutations of some reference objects in place of the original metric distance. However, the Achilles heel of STR approach is the need to reorder the result set of the search according to the metric distance. This forces to use a support database to store the original objects, which requires efficient random I/O on a fast secondary memory (such as flash-based storages). In this paper, we propose to extend the Surrogate Text Representation to specifically address a class of visual metric objects known as Vector of Locally Aggregated Descriptors (VLAD). This approach is based on representing the individual sub-vectors forming the VLAD vector with the STR, providing a finer representation of the vector and enabling us to get rid of the reordering phase. The experiments on a publicly available dataset show that the extended STR outperforms the baseline STR achieving satisfactory performance near to the one obtained with the original VLAD vectors.Comment: In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 4: VISAPP, p. 383-39
    • …
    corecore