54,758 research outputs found

    A GPU-based multi-criteria optimization algorithm for HDR brachytherapy

    Full text link
    Currently in HDR brachytherapy planning, a manual fine-tuning of an objective function is necessary to obtain case-specific valid plans. This study intends to facilitate this process by proposing a patient-specific inverse planning algorithm for HDR prostate brachytherapy: GPU-based multi-criteria optimization (gMCO). Two GPU-based optimization engines including simulated annealing (gSA) and a quasi-Newton optimizer (gL-BFGS) were implemented to compute multiple plans in parallel. After evaluating the equivalence and the computation performance of these two optimization engines, one preferred optimization engine was selected for the gMCO algorithm. Five hundred sixty-two previously treated prostate HDR cases were divided into validation set (100) and test set (462). In the validation set, the number of Pareto optimal plans to achieve the best plan quality was determined for the gMCO algorithm. In the test set, gMCO plans were compared with the physician-approved clinical plans. Over 462 cases, the number of clinically valid plans was 428 (92.6%) for clinical plans and 461 (99.8%) for gMCO plans. The number of valid plans with target V100 coverage greater than 95% was 288 (62.3%) for clinical plans and 414 (89.6%) for gMCO plans. The mean planning time was 9.4 s for the gMCO algorithm to generate 1000 Pareto optimal plans. In conclusion, gL-BFGS is able to compute thousands of SA equivalent treatment plans within a short time frame. Powered by gL-BFGS, an ultra-fast and robust multi-criteria optimization algorithm was implemented for HDR prostate brachytherapy. A large-scale comparison against physician approved clinical plans showed that treatment plan quality could be improved and planning time could be significantly reduced with the proposed gMCO algorithm.Comment: 18 pages, 7 figure

    A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT

    Full text link
    Purpose: Current inverse planning methods for IMRT are limited because they are not designed to explore the trade-offs between the competing objectives between the tumor and normal tissues. Our goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: We developed a hierarchical evolutionary multiobjective algorithm designed to quickly generate a diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the trade-offs in the plans. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. Results: Acceleration techniques implemented on both levels of the hierarchical algorithm resulted in short, practical runtimes for optimizations. The MOEA improvements were evaluated for example prostate cases with one target and two OARs. The modified MOEA dominated 11.3% of plans using a standard genetic algorithm package. By implementing domination advantage and protocol objectives, small diverse populations of clinically acceptable plans that were only dominated 0.2% by the Pareto front could be generated in a fraction of an hour. Conclusions: Our MOEA produces a diverse Pareto optimal set of plans that meet all dosimetric protocol criteria in a feasible amount of time. It optimizes not only beamlet intensities but also objective function parameters on a patient-specific basis

    Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part II: identification from tests under heterogeneous stress field

    Full text link
    In Part I of this paper we have presented a simple model capable of describing the localized failure of a massive structure. In this part, we discuss the identification of the model parameters from two kinds of experiments: a uniaxial tensile test and a three-point bending test. The former is used only for illustration of material parameter response dependence, and we focus mostly upon the latter, discussing the inverse optimization problem for which the specimen is subjected to a heterogeneous stress field.Comment: 18 pages, 12 figures, 6 table

    Increasing the density of available pareto optimal solutions

    Get PDF
    The set of available multi-objective optimization algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult - mainly due to the computational cost - to use a population large enough to ensure the likelihood of obtaining a solution close to the DMs preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimization algorithm. This method, which we refer to as Pareto estimation, is tested against a set of 2 and 3-objective test problems and a 3-objective portfolio optimization problem to illustrate its’ utility for a real-world problem
    • …
    corecore