6 research outputs found

    Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements

    Get PDF
    Copyright @ 2012 ElsevierIn this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances. The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an individual random variable satisfying a certain probability distribution over the interval [0,1]. Such a probability distribution is allowed to be any commonly used distribution over the interval [0,1] with known conditional probability. The aim of the addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.This work was supported in part by the National 973 Project under Grant 2009CB320600, National Natural Science Foundation of China under Grants 61028008, 61134009 and 60825303, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Optimal Filters with Multiple Packet Losses and its Application in Wireless Sensor Networks

    Get PDF
    This paper is concerned with the filtering problem for both discrete-time stochastic linear (DTSL) systems and discrete-time stochastic nonlinear (DTSN) systems. In DTSL systems, an linear optimal filter with multiple packet losses is designed based on the orthogonal principle analysis approach over unreliable wireless sensor networks (WSNs), and the experience result verifies feasibility and effectiveness of the proposed linear filter; in DTSN systems, an extended minimum variance filter with multiple packet losses is derived, and the filter is extended to the nonlinear case by the first order Taylor series approximation, which is successfully applied to unreliable WSNs. An application example is given and the corresponding simulation results show that, compared with extended Kalman filter (EKF), the proposed extended minimum variance filter is feasible and effective in WSNs

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    State Estimation with Unconventional and Networked Measurements

    Get PDF
    This dissertation consists of two main parts. One is about state estimation with two types of unconventional measurements and the other is about two types of network-induced state estimation problems. The two types of unconventional measurements considered are noise-free measurements and set measurements. State estimation with them has numerous real supports. For state estimation with noisy and noise-free measurements, two sequential forms of the batch linear minimum mean-squared error (LMMSE) estimator are obtained to reduce the computational complexity. Inspired by the estimation with quantized measurements developed by Curry [28], under a Gaussian assumption, the minimum mean-squared error (MMSE) state estimator with point measurements and set measurements of any shape is proposed by discretizing continuous set measurements. State estimation under constraints, which are special cases of the more general framework, has some interesting properties. It is found that under certain conditions, although constraints are indispensable in the evolution of the state, update by treating them as measurements is redundant in filtering. The two types of network-induced estimation problems considered are optimal state estimation in the presence of multiple packet dropouts and optimal distributed estimation fusion with transformed data. An alternative form of LMMSE estimation in the presence of multiple packet dropouts, which can overcome the shortcomings of two existing ones, is proposed first. Then under a Gaussian assumption, the MMSE estimation is also obtained based on a hard decision by comparing the measurements at two consecutive time instants. It is pointed out that if this comparison is legitimate, our simple MMSE solution largely nullifies existing work on this problem. By taking linear transformation of the raw measurements received by each sensor, two optimal distributed fusion algorithms are proposed. In terms of optimality, communication and computational requirements, three nice properties make them attractive

    State Estimation with Unconventional and Networked Measurements

    Get PDF
    This dissertation consists of two main parts. One is about state estimation with two types of unconventional measurements and the other is about two types of network-induced state estimation problems. The two types of unconventional measurements considered are noise-free measurements and set measurements. State estimation with them has numerous real supports. For state estimation with noisy and noise-free measurements, two sequential forms of the batch linear minimum mean-squared error (LMMSE) estimator are obtained to reduce the computational complexity. Inspired by the estimation with quantized measurements developed by Curry [28], under a Gaussian assumption, the minimum mean-squared error (MMSE) state estimator with point measurements and set measurements of any shape is proposed by discretizing continuous set measurements. State estimation under constraints, which are special cases of the more general framework, has some interesting properties. It is found that under certain conditions, although constraints are indispensable in the evolution of the state, update by treating them as measurements is redundant in filtering. The two types of network-induced estimation problems considered are optimal state estimation in the presence of multiple packet dropouts and optimal distributed estimation fusion with transformed data. An alternative form of LMMSE estimation in the presence of multiple packet dropouts, which can overcome the shortcomings of two existing ones, is proposed first. Then under a Gaussian assumption, the MMSE estimation is also obtained based on a hard decision by comparing the measurements at two consecutive time instants. It is pointed out that if this comparison is legitimate, our simple MMSE solution largely nullifies existing work on this problem. By taking linear transformation of the raw measurements received by each sensor, two optimal distributed fusion algorithms are proposed. In terms of optimality, communication and computational requirements, three nice properties make them attractive
    corecore