7 research outputs found

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

    Get PDF
    Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimization technique based on the gravitational search algorithm (GSA). Finding flocking parameters using swarm behaviors is the main contributing of this paper to minimize the cost function. The cost function displays the average of Euclidean distance of the center of mass (COM) away from the moving target. One of the benefits of using GSA is its application in multiple targets tracking with satisfying results. Simulation results indicate that this scheme outperforms existing ones and demonstrate the ability of this approach in comparison with the previous methods

    Optimal flocking control for a mobile sensor network based a moving target tracking

    No full text
    corecore