8,287 research outputs found

    Sequential Monte Carlo pricing of American-style options under stochastic volatility models

    Full text link
    We introduce a new method to price American-style options on underlying investments governed by stochastic volatility (SV) models. The method does not require the volatility process to be observed. Instead, it exploits the fact that the optimal decision functions in the corresponding dynamic programming problem can be expressed as functions of conditional distributions of volatility, given observed data. By constructing statistics summarizing information about these conditional distributions, one can obtain high quality approximate solutions. Although the required conditional distributions are in general intractable, they can be arbitrarily precisely approximated using sequential Monte Carlo schemes. The drawback, as with many Monte Carlo schemes, is potentially heavy computational demand. We present two variants of the algorithm, one closely related to the well-known least-squares Monte Carlo algorithm of Longstaff and Schwartz [The Review of Financial Studies 14 (2001) 113-147], and the other solving the same problem using a "brute force" gridding approach. We estimate an illustrative SV model using Markov chain Monte Carlo (MCMC) methods for three equities. We also demonstrate the use of our algorithm by estimating the posterior distribution of the market price of volatility risk for each of the three equities.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS286 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sequential Monte Carlo Methods for Option Pricing

    Full text link
    In the following paper we provide a review and development of sequential Monte Carlo (SMC) methods for option pricing. SMC are a class of Monte Carlo-based algorithms, that are designed to approximate expectations w.r.t a sequence of related probability measures. These approaches have been used, successfully, for a wide class of applications in engineering, statistics, physics and operations research. SMC methods are highly suited to many option pricing problems and sensitivity/Greek calculations due to the nature of the sequential simulation. However, it is seldom the case that such ideas are explicitly used in the option pricing literature. This article provides an up-to date review of SMC methods, which are appropriate for option pricing. In addition, it is illustrated how a number of existing approaches for option pricing can be enhanced via SMC. Specifically, when pricing the arithmetic Asian option w.r.t a complex stochastic volatility model, it is shown that SMC methods provide additional strategies to improve estimation.Comment: 37 Pages, 2 Figure

    Two-state filtering for joint state-parameter estimation

    Get PDF
    This paper presents an approach for simultaneous estimation of the state and unknown parameters in a sequential data assimilation framework. The state augmentation technique, in which the state vector is augmented by the model parameters, has been investigated in many previous studies and some success with this technique has been reported in the case where model parameters are additive. However, many geophysical or climate models contains non-additive parameters such as those arising from physical parametrization of sub-grid scale processes, in which case the state augmentation technique may become ineffective since its inference about parameters from partially observed states based on the cross covariance between states and parameters is inadequate if states and parameters are not linearly correlated. In this paper, we propose a two-stages filtering technique that runs particle filtering (PF) to estimate parameters while updating the state estimate using Ensemble Kalman filter (ENKF; these two "sub-filters" interact. The applicability of the proposed method is demonstrated using the Lorenz-96 system, where the forcing is parameterized and the amplitude and phase of the forcing are to be estimated jointly with the states. The proposed method is shown to be capable of estimating these model parameters with a high accuracy as well as reducing uncertainty while the state augmentation technique fails
    • …
    corecore