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Abstract

This paper presents an approach for simultaneous estimation of the state and un-
known parameters in a sequential data assimilation framework. The state augmen-
tation technique, in which the state vector is augmented by the model parameters,
has been investigated in many previous studies and some success with this technique
has been reported in the case where model parameters are additive. However, many
geophysical or climate models contains non-additive parameters such as those aris-
ing from physical parametrization of sub-grid scale processes, in which case the state
augmentation technique may become ineffective since its inference about parameters
from partially observed states based on the cross covariance between states and pa-
rameters is inadequate if states and parameters are not linearly correlated. In this
paper, we propose a two-stages filtering technique that runs particle filtering (PF) to
estimate parameters while updating the state estimate using Ensemble Kalman filter
(ENKF; these two “sub-filters” interact. The applicability of the proposed method is
demonstrated using the Lorenz-96 system, where the forcing is parameterized and the
amplitude and phase of the forcing are to be estimated jointly with the states. The
proposed method is shown to be capable of estimating these model parameters with a
high accuracy as well as reducing uncertainty while the state augmentation technique
fails.
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1 Introduction

The usefulness and reliability of a data assimilation (DA) technique typically requires a math-
ematical model that accurately simulate the actual dynamical processes. In many instances,
the model contains uncertain parameters which may appear as additive or non-additive pa-
rameters or the so-called “closure parameters”, which arise from the parameterizations of the
unresolved sub-scale processes. Use of the incorrect values of the parameters in the DA may
lead to large errors in the state estimates and inconsistency between the forecast and reality.
A key strategy in increasing effectiveness of numerical prediction of climate, weather or other
geophysical processes is the development of a DA method for simultaneously estimating val-
ues of the model parameters as well as the state variables that are both incompletely known.
The problem of the joint state-parameter estimation has been investigated in many previous
works. To deal with the uncertainty of model parameter in the context of DA, a commonly
used DA approach such as the ensemble Kalman filter (ENKF) [1, 2] or local ensemble trans-
form Kalman filter (LETKF) [3] has been adapted by augmenting the state vector with the
uncertain parameters; hence the augmented method [4–6]. The standard Kalman update
equations are then applied to estimate the combined state-parameter vector. In all Kalman-
type methods, the inference of the parameters relies substantially on the (flow-dependent)
cross-covariance between the states variables and the model parameters, which is approxi-
mated from the ensemble forecast in the ensemble-based methods. If the dimension of the
model parameters is comparable to that of the state vector, the augmented state vector
becomes significantly larger than that of the original problem, which introduces the increase
in the computational load as well as the inaccuracies in computing covariance matrices. One
approach to avoid this difficulty is the interacting Kalman filter whereby two Kalman filters
are designed to estimate states and parameter separately and the two filters interact [7–
9]. A more recent approach to this problem is the use of the augmented LETKF [4, 6],
which computes in parallel the Kalman update equations for the subdivided local regions
with a smaller dimensions of the state vector. Both approaches demonstrate successful re-
sults in the case of the additive parameters. Unfortunately, in the cases of the multiplicative
parameters, the augmented techniques are usually problematic as demonstrated in Yang [10].

In this paper, we focus on the case that the dimension of the state vector is large while that
of the non-additive model parameters is comparatively small. Hence, we apply the ENKF
to estimate the state and separately estimate the model parameters by the particle filtering
(PF) and the two sub-filters recursively interact; hence the name “two-stage” filtering. The
results will be compared with the augmented ENKF, which will be reviewed in Section 2,
to confirm the ineffectiveness of using it in such situation. In a way, the two-stage filtering
method in this paper can be considered as a suboptimal “approximation” of the well-known
Rao-Blackwellized particle filtering (RBPF) [11, 12] and this will be explained in Section 3.
In section 4, we test the proposed method using the Lorenz-96 model [13] and assume the
“perfect model” scenario where the only source of the model error is the uncertain parame-
ters. Section 5 addresses the“imperfect model” case using the fast-slow Lorenz-96 model as
a proof of concept in which the closure parameters arising from some parameterizations of
the fast-scale process will be estimated.
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2 Augmented ENKF for joint state-parameter estima-

tion

Let x ∈ <m be the m− dimensional model state vector and θ ∈ <q be the q−dimensional
vector specifying the model parameter whose true values are constant but unknown. Let
fk+1
k (x(tk), θ) be a map that propagate the state at time tk to tk+1. In the augmented

method, we treat the combined vector w = [x, θ]T ∈ <n+q as the new state vector that is
updated according to a dynamical system

wk+1 = f̃k+1
k (wk) =

[
fk+1
k (xk, θk)

θk

]
. (1)

Let y ∈ <r be the r−dimensional observation vector which is related to the model state by
the equation

yk+1 = Hx+ εk, (2)

where εk is assumed to be zero-mean Gaussian noise with covariance matrix R and the
observation operator H ∈ <r×m is assumed to be linear only to simplify notation but our
discussion below is still valid without this assumption. In most situations, the model pa-
rameters are not observed and the observation operator for the augmented system has a
form

H̃w = [H 0]w = Hx. (3)

In the ENKF method, the spread of the ensemble of size n is used to approximate the
background error covariance matrix and the Kalman update equations are applied to ap-
proximate the analyzed ensemble mean and the analysis error covariance matrix. For the
above augmented state-parameter system, the background error covariance has the following
sub-structures.

P =

[
Px Pxθ

PT
xθ Pθ

]
, (4)

where Px ∈ <m×m is the background error covariance computed from the forecast ensemble
covariance of x, Pxθ ∈ <m×q is the cross covariance between the model state x and parameter
θ, and Pθ ∈ <q×q is the background error covariance computed from the forecast ensemble
covariance of θ. The inference about the unobserved parameter and its uncertainty for the
joint state-parameter estimation relies crucially on the cross covariance matrix Pxθ, which
“linearly regresses” the increment of the observed states to update the increment of the
unobserved parameters. This can be easily seen by using the standard Kalman equation for
the analyzed ensemble

wa = wb + K(y − H̃wb), (5)

where wb is the forecast state and the Kalman gain matrix K is given by

K :=

[
Kx

Kθ

]
= PH̃T (H̃TPH̃T + R)−1. (6)
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Substituting (4) into (6), we can rewrite (5) as

xa = xb + Kx(y − H̃xb)

θa = θb + Kθ(y − H̃xb),
(7)

where the gain matrices for the model state Kk and the parameter Kθ are given by

Kx = PxH
T (HPxH

T + R)−1

Kθ = PT
xθH

T (HPxH
T + R)−1.

(8)

It is now clear that the gain matrix for the analyzed parameter ensemble depends on Pxθ.
Notice that while the covariance matrix Pθ has no effect on both gain matrices,Kx and Kθ,
the covariance matrix Px effects both. The equation for Kθ in (8) also shows that the larger
uncertainty in the forecast model state (i.e. the larger Px), the smaller rate change to the
parameter increment for a given Pxθ. Therefore, in a chaotic system which typically causes
a large ensemble spreading, the update of the model parameters can be expected to be slow.
This may lead the filter divergence if the parameters are initially misspecified (e.g. the actual
parameters are at the tail of the initial distribution of the parameters) since the parameters
could be “sticking” to their (incorrect) initial values for so long that the filter may end up
repeatedly run forecasting with incorrect parameters, which lead most ensemble members
to rapidly drift away from the observations. In some cases, some ensemble members may
become dynamically unstable and the ensemble forecast becomes unbounded, in which case
the filter “blows up”.

3 Two-stages filtering

Let consider again the combined state vector w = [x, θ]T . In Bayesian filtering framework,
we aim to recursively evaluate the filtering distribution p(wk|y1:k), where y1:k = {y1, . . . , yk}.
The particle filter (PF) [12] introduces an approximate solution to this problem without the
assumptions of linearity or Gaussian uncertainties and they are not limited to estimating
only the first two moments as in the Kalman-type methods. However, the PF is a computa-
tionally expensive method, which limits its applicability to a high-dimensional problem [14].
Therefore, many modified PFs have been developed to reduce the overall computational load
in comparison to the standard PF. The two-stages filtering proposed in this paper is moti-
vated by an approach used in the Rao-Blackwellized particle filtering (RBPF) [11, 12, 15]
that runs PF on a part of state while updating the corresponding particles for the other
part of state using the conditional KF. Suppose that the model state is evolved in a linear-
Gaussian fashion, we may consider the following factorization for the joint state-parameter
estimation:

p(w1:k|y1:k) = p(x1:k|θ1:k, y1:k)p(θ1:k|y1:k). (9)

Although p(x1:k|θ1:k, y1:k) is assumed to be Gaussian for a given set of parameters, p(θ1:k|y1:k)
is generally non-Gaussian. Running the standard PF for the combined state w can be
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computationally expensive if the dimension of w is large and it does not efficiently exploit
the linear structure of the model state. The key idea of RBPF is that a PF method should
be used on the parameter vector θ, which is assumed to have a small dimension in this paper,
while a KF method should be applied for the state vector x. To this end, the RBPF method
approximates p(θ1:k|y1:k) by weighted particles and rewrite Eq.(9) as

p(w1:k|y1:k) ≈
N∑
i=1

ω
(i)
k p(x1:k|θ

(i)
1:k, y1:k)δ(θ1:k − θ

(i)
1:k), (10)

where ω
(i)
k denotes the particle weight. Observe that N KFs must be used to evaluate

p(x1:k|θ(i)1:k, y1:k) in the above equation for each i. In general,θ1:k can be sampled from any

appropriate proposal density. For simplicity, we will sample θ
(i)
1:k from the transition density

p(θk|θk−1), in which case we can use standard Bayesian analysis under some Markovian
assumptions, see for exmaple, [16], to show that the particle weights can be recursively
updated by

ω
(i)
k ∝ p(yk|y1:k−1, θ

(i)
k )ω

(i)
k−1. (11)

Note that we do not naturally have a dynamic for the parameter, so we have to artificially
design p(θk|θk−1). Some choices of the parameter dyanmics will be discussed later. The
above predictive density of observation conditioned on the parameter paraticle serves as a
likelihood function and it can be evaluated by

p(yk|y1:k−1, θ
(i)
k ) ∝ N (Hx̂k(θ

(i)
k ), HP b(θ

(i)
k )kH

T +R), (12)

where the mean estimate x̂k(θ
(i)
k ) and the background covariance P b(θ

(i)
k ) are computed from

the ensemble in the i−th KF. It is clear that the computational cost per particle is generally
more expensive than applying the standard PF on the combined state w. However, the RBPF
can still be expected to improve the efficiency over the standard PF since fewer particles
are required to achieve a given convergence [12, 15, 17]. Also, the RBPF approaches have
been reported to significantly reduce the variance of the particle weights in comparison to
the standard PF [15]. The two-stages filtering in this paper adopts the state partitioning
apporach from RBPF but it reduces the overall computational load by “approximating” the
standard RBPF method as described below.

Like the RBPF, the two-stages filtering uses PF for estimating the parameter vectorθ and
ENKF for the model state vector x. However, we replace p(x1:k|θ(i)1:k, y1:k) in Eq. (10) by

p(x1:k|θ(i)1:k, y1:k) ≈ p(x1:k|θ̂1:k, y1:k) (13)

This results in an “interaction” of one PF and one single ENKF through a point parameter
estimate from PF and the mean estimate of the state from ENKF; hence two-stages filtering.
We also make an approximation

p(yk|y1:k−1, θ
(i)
k ) ≈ p(yk|y1:k−1, θ

(i)
k , f(x̂k−1)) ∝ N (Hx̂k(θ

(i)
k ), R), (14)

where x̂k−1 is the state estimate from the ENKF in the (k − 1)−th step. Without this
approximation, one would have to run N background updates from on the same analysis
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ensemble of the (k − 1)−th step but for different parameter θ
(i)
k . So, if the size of ensemble

for ENKF is M , we have to compute fkk−1(·) in Eq. (1) for MN times. The approximation
in Eq. 14, however, reduces this computation to only n times. Of course, there will be a
loss in performance with these approximations. If P (θk|y1:k) is multi-modal, passing only
the mean of this distribution to one single ENKF may result in filter divergence since the
background ensemble in ENKF may diverge from a high probability region and likewise for
passing only the mean of the state to the PF step. Therefore, we restrict our numerical
experiments in the subsequent sections to the cases where the flow maps do not produce a
multi-modal forecast distribution.

The algorithm for the two-stages filtering is now be summarized below.

• Initialization

– Sample initial particle for parameter θ
(i)
0 , i = 1, . . . , N

– Choose initial distribution for the state, say N (x̂0, P0)

– Sample initial state ensemble members x
(j)
0 , j = 1, . . . ,M

For every assimilation cycle k, we perform the following

• PF-stage

– Artificially “move” the parameter particles according to some artificial (stochas-
tic/deterministic) dynamic, say g(θ, η), and update the predicted observation

θ
(i)
k = g(θ

(i)
k−1, ηk), ηk ∼ N (0, V )

y
(i)
k = h(fkk−1(x̂k−1; θ

(i)
k )) + εk(i)

(15)

– Compute the unnormalized weights in Eq. (11) but using the approximation in
Eq. (14)

– Normalized the weight to obtain the weighted particle {w(i)
k , θ

(i)
k }

– If necessary, resampling {w(i)
k , θ

(i)
k }

– Compute a point estimate θ̂k from {w(i)
k , θ

(i)
k } (e.g. ensemble mean)

• ENKF-stage

– Update background ensemble to obtain the predicted observation

x
(j)
k = fkk−1(x

a,(j)
k−1 ; θ̂k)

y
(j)
k = h(x

(j)
k ) + ε

(j)
k

(16)

– Using ENKF to obtain to find the analyzed distribution N (x̄ak|θ̂k, P a
k ) and ana-

lyzed ensemble x
a,(j)
k

– Set x̂k = x̄ak
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The choice of the artificial dynamic g(θ, η) also plays a pivotal role in success of this method.
Since the true parameters are assumed to be constant in time, the so-called persistence model
has been commonly used in several studies and it is given by

θk+1 = θk. (17)

However, if the initial parameter are misspecified to begin with or the ensemble size is too
small, we can only resample from the same set of poorly informative particles at every
assimilation cycles in the PF stage. This will eventually make the model state ensemble
drifting too far away from the observation. To overcome this issue, the persistence model
may be replaced by a random walk model

θk+1 = θk + ηk, ηk ∼ N (0,Wk) (18)

for some given covariance matrix Wk. This model is aimed to generate a new set of pa-
rameter particles at every assimilation cycle. However,the independent random movement
of parameter particles will result in parameter posteriors that is far too diffused since the
covariance will increase over time. This issue has been long recognized and a solution has
been proposed by Liu and West [18]. In their work, a new artificial model for the parameters
is given by

θk+1 = αθk + (1− α)θk + ηt 0 < α < 1, (19)

where θk is the ensemble mean of the parameter ensemble. Clearly, this model is designed to
“shrinks” a new set of particles toward the mean at the degree determined by α. Therefore,
the over-dispersive issue of parameter particles is suppressed. In a frame work of the smooth-
ing kernel, the optimal value of α can be calculated at each assimilation cycle for a given
“target” variance, which is typically the variance of parameter ensemble before applying any
artificial dynamic to it, but this is usually inconvenient in practice and a heuristic choice of
0.95 < α < 0.99 may be used instead, see [18] for more details.

4 Case study 1: Lorenz-96 with parameterized forcing

In this numerical experiment, we assume that the dynamic of the“true” state is governed by
the Lorenz-96 model [13]

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (20)

where i = 1, . . . , Nx with cyclic indices and F is the forcing function. We choose Nx = 40
and assume that F is parameterized by

F = f0 + θ1 sin(
2π

θ2
i), (21)

where f0 = 8 and θ = [θ1, θ2] is unknown and has to be estimated. The “perfect model” case
is assumed in this experiment, hence the forecast model also use (20) and 21. Therefore, the
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uncertainty in the unknown θ is the only source of the model error. Note that this setup
allows us to justify our estimation skill by comparing the parameter estimates with the true
parameter θ∗, which is chosen to be θ∗ = [2, 40]. In the presence of other sources of model
errors, however, it would be better to emphasize parameter estimates that result in the
model outputs fitting with the observations as well as possible, not the error in parameter
estimates.

The model (20) is numerically solved by the fourth-order Runge-Kutta method with a time
step ∆t = 0.05. We initialize the model state ensemble by running a spin-up run for 30, 000δt
and use the simulation from the next 6, 000 time steps in the experiment. One single member
from the ensemble is then used as the “truth” and the observations are constructed by adding
the Gaussian noise with zero mean and covariance 0.1I to the odd-indexed state variables,
hence 20 observations. The parameter particles, however, has no “climatological informa-
tion”, so we initialize the parameter θ according to θ1 ∼ N (4, 1) and θ2 ∼ N (20, 10), where
the initial parameters are clearly misspecified and the standard deviation of the parameter
ensemble is chosen to be large enough that the true parameter is ensured to be within the
support of the initial ensemble.

In the first experiment, we set the time interval between observations, denoted by δt, to
δ = ∆t. This short interval between the assimilation cycle leads to an approximately linear
flow map as previously demonstrated in [19]. An ensemble consisting of 250 particles is used
in the augmented state method and the two-stages filtering uses 200 particles to estimate
the parameter by the PF and 50 ensemble members to estimate xi by the ENKF. In second
case, we extended the assimilation time interval to δt = 10∆t, which elevates the degree of
the nonlinearity of the flow map.

The mean estimates θ1 and θ2 for both two-stage filtering and augmented ENKF methods
are compared in Figure 1 and it is clear that the two-stages filter with the Liu-West model
yields more accurate parameter estimates in all 20 different independent experiments, whose
random initial ensembles are drawn independently. In the case of δ = 10∆t, similar results
are obtained as shown in Figure 2. Figure 3 compares the convergence of different methods
for δt = 10∆t and the total number of 250 particles, of which 200 particles are used in the PF
stage. It is clear that the two-stage filtering method with the persistent model is sensitive to
the particle impoverishment, in which the particles become less diverse, and the convergence
in the augmented ENKF method is relatively slow and the ensemble mean converges to an
incorrect value of the parameter. As explained in Section 2, the slow convergence of the
augmented ENKF method can be explained by the large spreading of the ensemble of the
state vector x due to the large δt. In the case of the Liu-West model, the update of the
ensemble mean is similar to that of the persistence model during the first few assimilation
steps, after which the ensemble in the persistence model collapses whereas the ensemble in
the Liu-West model continues to explore a wider region in the parameter space.

8



100 200 300 400 500 600
−1

0

1

2

3

4

5

6

θ
1

Two−stage+Persistence

100 200 300 400 500 600
15

20

25

30

35

40

45

50

55

60

θ
2

100 200 300 400 500 600
−3

−2

−1

0

1

2

3

4

5

6

7

θ
1

Two−stage+Persistence

100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

50

θ
2

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

8

θ
1

Evolution of the point Estimate

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

30

35

40

θ
2

Evolution of the Mean Estimate

Figure 1: The parameter posterior means from 20 different independent experiments for
two-stagess filtering with 200 particles in the PF stage and 50 particles in the ENKF stage
(Left) are compared with those obtained from the two-stages filtering with the same number
of particles but using the persistence model instead of Liu-West model (Middle) as well as
those from the ENKF (Right) with 250 ensemble members. The assimilation interval is
δ = ∆t and the true parameters, θ∗1 = 4 and θ∗2 = 40, are shown in the dash lines.
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Figure 2: Same as in Figure 1 except δ = 10∆t.
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as a function of the assimilation cycle. The dash line represent the true parameter. The
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method. The assimilation time is δt = 10∆t.
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5 Case study 2: Fast-Slow Lorenz-96 system

We test our method in the case that the model includes the so-called “closure parameter”
that may arise from parameterizations of some unresolved physical processes. We consider
the following fast-slow variant of Lorenz-96 model, where the slow variable xi is forced by
the fast variable yj,i.

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F − hc

b

Ny∑
j=1

yj,i

dyj,i
dt

= cb(yj−1,i − yj+2,i)yj+1,i − cyj,i +
hc

b
xiyNy−1,i

(22)

where i = 1, . . . , Nx and j = 1, . . . , Ny, both of which are cyclic. We use F = 8, Nx = 16,
Ny = 8, the coupling strength h = 1, the time scale separation c = 10 and the magnitude of
the fast component b = 10. It will be convenient to denote the fast-scale forcing by gi(xi, t) =
hc
b

∑Ny

j=1 yj,i. We use the fourth-order Runge-Kutta method to numerically integrate this fast-
slow system with the integration time step ∆t = 0.005 to generate the “truth” time-series
for xi and yi and the observations are then constructed from xi for i = 1, 3, . . . , 19 by adding
the realizations of the Gaussian distribution N (0, 0.1).

In the following experiments, we assume that only the physical process of slow variables is
known, so we use a forecast model for the slow variables that takes into account the effect of
the (unresolved) fast-scale variables only through a parametrization in term of the resolved
variables xi. In particular, the forecast model is given by

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F − (θ1(t) + θ2(t)xi), (23)

where the polynomial with coefficients θ1(t) and θ2(t) represents an approximation of the
unresolved forcing gi. We plot the true forcing gi as a function of the true state variables xi
using the truth and the result is shown as the scatter plot in Figure 4. Clearly, in perspective
of knowing only the slow process, there is an uncertainty in the fast-scale forcing gi for a
given xi, which is is higher for a large-scale xi. Nevertheless, the trend of the data cloud
in Figure 4 looks reasonably linear and the coefficients of the fitted line is found to to be
θ∗1 = 1.38 and θ∗2 = 0.102. Therefore, we expect the mean of θ1(t) and θ2(t) to be close to θ∗1
and θ∗2, respectively.

Since θ1(t) and θ2(t) are time-dependent, we will not directly estimate them. Instead, we
will use the following models:

1. We consider (23) as a random dynamical system where

θ1(t) ∼ N (µ1, σ1)

θ2(t) ∼ N (µ2, σ2)
(24)
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Figure 4: A scatter plot of the true forcing gi and xi along with the straight line obtained
by fitting θ1,2 to the pairs gi and xi

and try to estimate the parameters µ1,2 and σ1,2. Note that our model for θ1,2 is
imperfect in that it assumes θ1,2 to be uncorrelated and serially independent random
forcing, and the variances σ1,2 are independent of xi, which contradicts with what was
mentioned above. Nevertheless, we expect µ1 ≈ θ∗1 and µ2 ≈ θ∗2 but, as for σ1,2, these
values may or may not converge. For convenience, we will refer to this model as the
“random model” (RM).

2. We consider a stochastic parameterization

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F − (θ1 + θ2xi) + ei(t), (25)

where ei(t) is the stochastic forcing and represents uncertainty due to the deterministic
parameterization. Following a study of parametrizations in Lorenz’s96 system by Wilks
(2005), the deviation ei from the fitted line is given as an independent AR(1) process
for each slow variable xi:

ei(t) = φei(t− δt) + σe(1− φ2)1/2ηi(t), (26)

where ηi(t) ∼ N (0, 1). We will refer to the model in (26) as the “stochastic model”
(SM). Several parameter regimes were studied in Wilks but in this paper we will study
a feasibility of using data assimilation to determine θ1, θ2,φ, and σe. Again, we expect
θ1 ≈ θ1∗ and θ2 ≈ θ2∗. However, the parameterσe may or may not converge to
a particular parameter since the model assumes σe to be constant while the scatter
plot in Figure 4 clearly shows that σe depends on the slow variables xi. As for the
autoregressive parameter φ, we also do not have a “true” parameter to compare with
since the temporal autocorrelation in the model decreases exponentially with time lag
(in ∆t) but the actual autocorrelation has a different trend as shown in Figure 5. In
fact , the study in Wilks (2005) demonstrated that a very wide range of values of φ
and σe yields similar results for the ensemble-mean RMSE.
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Figure 5: Comparion between the acutral temporal autocorreltion of the true forcing and
that implied by ei(t) in (26) for different values of φ.

5.1 Results

We run 20 independent experiments that starts with different initial ensembles drawn inde-
pendently from the same prior distributions. The parameters are initially drawn from the
following prior distributions;µ1 ∼ N (3, 2), µ2 ∼ N (−2, 2), σ1 ∼ U(0.1, 0.9), σ2 ∼ U(0.1, 0.9),
θ1 ∼ N (3, 2), θ2 ∼ N (−2, 2), φ ∼ U(0.1, 0.9), and σe ∼ U(0.1, 0.9). We numerically
solve (23) with a numerical time step ∆t = 0.005 and set the assimilation cycle to δ = 50∆t.
For the two-stage filtering, we use 200 particles in the PF stage and 50 ensemble members
in the ENKF stage, hence using 250 ensemble members in the augmented ENKF for a fair
comparison. The marginal posterior distributions for the parameters of the RM and SM
models after 400 assimilation cycles are compared in Figure 6 for the two-stage filtering.
The distributions for θ1,2 for SM and µ1,2 for RM show similar characteristics in that their
mean values are close to one another and their distributions all contain θ∗1 and θ∗2 in the
supports. The means of the distribution of σ1,2 spread out over the ranges of 0.3-0.7 for σ1
and 0.2-0.4 for σ2 whereas the means of φ and σe vary in the ranges of 0.45-0.65 and 0.2-0.3,
respectively. As for the augmented ENKF, the results are not shown here since it suffers
the particle divergences, where most of particles diverge from the observation and the filter
eventually “blows-up”, see again explanation in the end of Section2

In addition to comparing µ1,2 with θ1,2, we measure the estimation skill by the error in the
state estimates, which is given by

RMSE =

〈∑Nx

i=1 ‖xtruei − x̂i‖22∑Nx

i=1 ‖xtruei ‖22

〉
, (27)

where 〈·〉 means the average over the entire trajectory and all 20 different experimental runs.
In Figure 8, the RMSEs in (27) obtained with both methods are compared for various total
number of particles, for which the number of particles in the PF stage of the two-stage
filtering method is fixed to M = 50. Clearly, the RMSE is saturated for N +M > 200.
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Figure 6: The posterior distributions of the paramters after 400 assimilation cycles with
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values of θ∗1 (top-left) and θ∗2 (top-right).
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6 Summary and Discussions

This paper proposed the two-stage filtering method for a joint state-parameter estimation
based on a combination of the PF and ENKF methods. Specifically, the PF is used to
estimate the uncertain parameter vector θk under an assumption that the initial state vector
is known, using the mean of the analyzed state vector x̂k−1. The new parameter estimate
is then updated based on the posterior parameter distribution approximated by the PF and
used in the subsequent ENKF stage to update the state vector according to the Kalman
update equations. Two numerical experiments are used to evaluate the ability of the two-
stage filtering for the joint state-parameter estimation in comparison with the augmented
ENKF method. Specifically, the first experiment uses the Lorenz 96 and assume that the
forecast model and the parametrization is perfect and the parameter is constant. Partial
observations (only half of the state variables is observed) and misspecified initial distributions
of the parameters are used to test the proposed method in the ability to calibrating the
incorrect parameters to the actual parameters. Our numerical results show that the two-
stage filtering method yields more accurate parameter estimates that the augmented ENKF.
The results also show the ineffectiveness of using the persistence model to artificially evolve
the parameters. In particular, the use of the Liu-West model show a substantial improvement
in the stability of the filter.

The second experiment uses the fast-slow Lorenz 96 as the true model whereas the forecast
model assumes the perfect physical law of the slow variable only but uses the first-order poly-
nomial to parameterize the unresolved fast-scale variable. Two cases of the parametrization
are used to test the proposed method. In the first case, the two coefficients of the polynomial
are assumed to be (independent) realizations of the Gaussian process and we try to estimate
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the means and variances of the processes. The second case assume the two coefficients to
be constant but adding the stochastic term into the forcing. This stochastic term is as-
sumed to be a realization of an AR1 process, which is determined by the autocorrelation
parameters and variance of the process. In both cases of the parameterizations, the mean
of the actual parameters (i.e. the means of the Gaussian process in the first case and the
constant coefficients in the second case) are properly estimated only by the two-stage filter-
ing; the augmented ENKF blows up in the experiments. As for the other parameters, they
converge for an individual run but not converge to the same parameter values when com-
paring 20 different independent experiments. Nevertheless, their uncertainties are reduced.
Further justifications of the accuracy of these parameter estimate will require an in-depth
investigation of the range of the optimal parameter values for these two parameterization
schemes.

Since the applications of the two-stage filtering in this paper are restricted to the cases where
the dimension of the parameter space is small and the parameters are spatially constant.
In the case whose the parameter vector are spatially dependent and large dimensional, a
localization technique may be needed to reduce the dimension of the original problem by
using analyzing a local region with a smaller dimension. With this in mind, a localization for
the PF must be developed and integrated into the two-stage filtering. In another situation
where the flow map of the state vector produces a multi-model forecast distribution, the
ENKF would be undoubtedly ineffective and we may have to replace the ENKF stage in the
two-stage filtering by, for example, the PF. The above situations are beyond the scope of
the present papaer and future works to deal with them will cer tainly provide a better tool
for the joint state-parameter estimation in the framework of the two-stage filtering than the
one presented in this paper.
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