128,203 research outputs found

    Optimal Fair Computation

    Get PDF
    A computation scheme among n parties is fair if no party obtains the computation result unless all other n-1 parties obtain the same result. A fair computation scheme is optimistic if n honest parties can obtain the computation result without resorting to a trusted third party. We prove, for the first time, a tight lower bound on the message complexity of optimistic fair computation for n parties among which n-1 can be malicious in an asynchronous network. We do so by relating the optimal message complexity of optimistic fair computation to the length of the shortest permutation sequence in combinatorics

    Fair Bandwidth Allocation for Multicasting in Networks with Discrete Feasible Set

    Get PDF
    We study fairness in allocating bandwidth for loss-tolerant real-time multicast applications. We assume that the traffic is encoded in several layers so that the network can adapt to the available bandwidth and receiver processing capabilities by varying the number of layers delivered. We consider the case where receivers cannot subscribe to fractional layers. Therefore, the network can allocate only a discrete set of bandwidth to a receiver, whereas a continuous set of rates can be allocated when receivers can subscribe to fractional layers. Fairness issues differ vastly in these two different cases. Computation of lexicographic optimal rate allocation becomes NP-hard in this case, while lexicographic optimal rate allocation is polynomial complexity computable when fractional layers can be allocated. Furthermore, maxmin fair rate vector may not exist in this case. We introduce a new notion of fairness, maximal fairness. Even though maximal fairness is a weaker notion of fairness, it has many intuitively appealing fairness properties. For example, it coincides with lexicographic optimality and maxmin fairness, when maxmin fair rate allocation exists. We propose a polynomial complexity algorithm for computation of maximally fair rates allocated to various source-destination pairs, which incidentally computes the maxmin fair rate allocation, when the latter exists

    Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction

    Full text link
    Motivated by applications to sensor networks, as well as to many other areas, this paper studies the construction of minimum-degree spanning trees. We consider the classical node-register state model, with a weakly fair scheduler, and we present a space-optimal \emph{silent} self-stabilizing construction of minimum-degree spanning trees in this model. Computing a spanning tree with minimum degree is NP-hard. Therefore, we actually focus on constructing a spanning tree whose degree is within one from the optimal. Our algorithm uses registers on O(logn)O(\log n) bits, converges in a polynomial number of rounds, and performs polynomial-time computation at each node. Specifically, the algorithm constructs and stabilizes on a special class of spanning trees, with degree at most OPT+1OPT+1. Indeed, we prove that, unless NP == coNP, there are no proof-labeling schemes involving polynomial-time computation at each node for the whole family of spanning trees with degree at most OPT+1OPT+1. Up to our knowledge, this is the first example of the design of a compact silent self-stabilizing algorithm constructing, and stabilizing on a subset of optimal solutions to a natural problem for which there are no time-efficient proof-labeling schemes. On our way to design our algorithm, we establish a set of independent results that may have interest on their own. In particular, we describe a new space-optimal silent self-stabilizing spanning tree construction, stabilizing on \emph{any} spanning tree, in O(n)O(n) rounds, and using just \emph{one} additional bit compared to the size of the labels used to certify trees. We also design a silent loop-free self-stabilizing algorithm for transforming a tree into another tree. Last but not least, we provide a silent self-stabilizing algorithm for computing and certifying the labels of a NCA-labeling scheme

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    Fair Interventions in Weighted Congestion Games

    Full text link
    In this work we study the power and limitations of fair interventions in weighted congestion games. Specifically, we focus on interventions that aim at improving the equilibrium quality (price of anarchy) and are fair in the sense that identical players receive identical treatment. Within this setting, we provide three key contributions: First, we show that no fair intervention can reduce the price of anarchy below a given factor depending solely on the class of latencies considered. Interestingly, this lower bound is unconditional, i.e., it applies regardless of how much computation interventions are allowed to use. Second, we propose a taxation mechanism that is fair and show that the resulting price of anarchy matches this lower bound, while the mechanism can be efficiently computed in polynomial time. Third, we complement these results by showing that no intervention (fair or not) can achieve a better approximation if polynomial computability is required. We do so by proving that the minimum social cost is NP-hard to approximate below a factor identical to the one previously introduced. In doing so, we also show that the randomized algorithm proposed by Makarychev and Sviridenko (Journal of the ACM, 2018) for the class of optimization problems with a "diseconomy of scale" is optimal, and provide a novel way to derandomize its solution via equilibrium computation

    Fair Data Representation for Machine Learning at the Pareto Frontier

    Full text link
    As machine learning powered decision making is playing an increasingly important role in our daily lives, it is imperative to strive for fairness of the underlying data processing and algorithms. We propose a pre-processing algorithm for fair data representation via which L2- objective supervised learning algorithms result in an estimation of the Pareto frontier between prediction error and statistical disparity. In particular, the present work applies the optimal positive definite affine transport maps to approach the post-processing Wasserstein barycenter characterization of the optimal fair L2-objective supervised learning via a pre-processing data deformation. We call the resulting data Wasserstein pseudo-barycenter. Furthermore, we show that the Wasserstein geodesics from the learning outcome marginals to the barycenter characterizes the Pareto frontier between L2-loss and total Wasserstein distance among learning outcome marginals. Thereby, an application of McCann interpolation generalizes the pseudo-barycenter to a family of data representations via which L2-objective supervised learning algorithms result in the Pareto frontier. Numerical simulations underscore the advantages of the proposed data representation: (1) the pre-processing step is compositive with arbitrary L2-objective supervised learning methods and unseen data; (2) the fair representation protects data privacy by preventing the training machine from direct or indirect access to the sensitive information of the data; (3) the optimal affine map results in efficient computation of fair supervised learning on high-dimensional data; (4) experimental results shed light on the fairness of L2-objective unsupervised learning via the proposed fair data representation.Comment: 57 pages, 9 figure
    corecore