29 research outputs found

    About the maximal rank of 3-tensors over the real and the complex number field

    Full text link
    High dimensional array data, tensor data, is becoming important in recent days. Then maximal rank of tensors is important in theory and applications. In this paper we consider the maximal rank of 3 tensors. It can be attacked from various viewpoints, however, we trace the method of Atkinson-Stephens(1979) and Atkinson-Lloyd(1980). They treated the problem in the complex field, and we will present various bounds over the real field by proving several lemmas and propositions, which is real counterparts of their results.Comment: 13 pages, no figure v2: correction and improvemen

    Tensor rank is not multiplicative under the tensor product

    Get PDF
    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specifically, if a tensor t has border rank strictly smaller than its rank, then the tensor rank of t is not multiplicative under taking a sufficiently hight tensor product power. The "tensor Kronecker product" from algebraic complexity theory is related to our tensor product but different, namely it multiplies two k-tensors to get a k-tensor. Nonmultiplicativity of the tensor Kronecker product has been known since the work of Strassen. It remains an open question whether border rank and asymptotic rank are multiplicative under the tensor product. Interestingly, lower bounds on border rank obtained from generalised flattenings (including Young flattenings) multiply under the tensor product

    Matrix Pencils and Entanglement Classification

    Full text link
    In this paper, we study pure state entanglement in systems of dimension 2⊗m⊗n2\otimes m\otimes n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication (SLOCC). We introduce a connection between entanglement manipulations in these systems and the well-studied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2⊗m⊗n2\otimes m\otimes n states are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 2⊗3⊗n2\otimes 3\otimes n systems, we also determine the hierarchy between these classes

    On the rank of 3x3x3 -tensors

    Get PDF
    Let U, V and W be finite dimensional vector spaces over the same field. The rank of a tensor t in U???V???W is the minimum dimension of a subspace of U???V???W containing t and spanned by fundamental tensors, i.e. tensors of the form u???v???w for some u in U, v in V and w in W. We prove that if U, V and W have dimension three, then the rank of a tensor in U???V???W is at most six, and such a bound cannot be improved, in general. Moreover, we discuss how the techniques employed in the proof might be extended to prove upper bounds for the rank of a tensor in U???V???W when the dimensions of U, V and W are higher
    corecore