7,417 research outputs found

    Wind power development : economics and policies

    Get PDF
    This study reviews the prospects of wind power at the global level. Existing studies indicate that the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 1 percent of the global electricity demand is currently derived from wind power despite 40 percent annual growth in wind generating capacity over the past 25 years. More than 98 percent of total current wind power capacity is installed in the developed countries plus China and India. It has been estimated that wind power could supply 7 to 34 percent of global electricity needs by 2050. However, wind power faces a large number of technical, economic, financial, institutional, market, and other barriers. To overcome these barriers, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides these policies, climate change mitigation initiatives resulting from the Kyoto Protocol (e.g., CO2-emission reduction targets in developed countries and the Clean Development Mechanism in developing countries) have played a significant role in promoting wind power.Energy Production and Transportation,Carbon Policy and Trading,Windpower,Environment and Energy Efficiency,Energy and Environment

    On the Economic Value and Price-Responsiveness of Ramp-Constrained Storage

    Full text link
    The primary concerns of this paper are twofold: to understand the economic value of storage in the presence of ramp constraints and exogenous electricity prices, and to understand the implications of the associated optimal storage management policy on qualitative and quantitative characteristics of storage response to real-time prices. We present an analytic characterization of the optimal policy, along with the associated finite-horizon time-averaged value of storage. We also derive an analytical upperbound on the infinite-horizon time-averaged value of storage. This bound is valid for any achievable realization of prices when the support of the distribution is fixed, and highlights the dependence of the value of storage on ramp constraints and storage capacity. While the value of storage is a non-decreasing function of price volatility, due to the finite ramp rate, the value of storage saturates quickly as the capacity increases, regardless of volatility. To study the implications of the optimal policy, we first present computational experiments that suggest that optimal utilization of storage can, in expectation, induce a considerable amount of price elasticity near the average price, but little or no elasticity far from it. We then present a computational framework for understanding the behavior of storage as a function of price and the amount of stored energy, and for characterization of the buy/sell phase transition region in the price-state plane. Finally, we study the impact of market-based operation of storage on the required reserves, and show that the reserves may need to be expanded to accommodate market-based storage

    Optimal household energy management and participation in ancillary services with PV production

    Get PDF
    The work presented in this paper deals with a project aiming to increase the value of photovoltaic (PV) solar production for residential application. To contribute to the development of the new functionalities for such system and the efficient control system to optimize its operation, this paper defines the possibility for the proposed system to participate to the ancillary services, particularly in active power service provider. This service of PV-based system for housing application, as it does not exist today, has led to a market design proposition in the distribution system. The mathematical model for calculating the optimal operation of system (sources, load, and the exchange power with the grid) results in a linear mix integer optimization problem where the objective is to maximize the profit obtained by participating to electricity market. The approach is illustrated in an example study case. The PV producer could benefit from its intervention on balancing market or ancillary services market despite of the impact on the profit of several kinds of uncertainty, as the intermittence of PV source.energy management ; ancillary services ; PV production ; household application

    Distributed Online Modified Greedy Algorithm for Networked Storage Operation under Uncertainty

    Full text link
    The integration of intermittent and stochastic renewable energy resources requires increased flexibility in the operation of the electric grid. Storage, broadly speaking, provides the flexibility of shifting energy over time; network, on the other hand, provides the flexibility of shifting energy over geographical locations. The optimal control of storage networks in stochastic environments is an important open problem. The key challenge is that, even in small networks, the corresponding constrained stochastic control problems on continuous spaces suffer from curses of dimensionality, and are intractable in general settings. For large networks, no efficient algorithm is known to give optimal or provably near-optimal performance for this problem. This paper provides an efficient algorithm to solve this problem with performance guarantees. We study the operation of storage networks, i.e., a storage system interconnected via a power network. An online algorithm, termed Online Modified Greedy algorithm, is developed for the corresponding constrained stochastic control problem. A sub-optimality bound for the algorithm is derived, and a semidefinite program is constructed to minimize the bound. In many cases, the bound approaches zero so that the algorithm is near-optimal. A task-based distributed implementation of the online algorithm relying only on local information and neighbor communication is then developed based on the alternating direction method of multipliers. Numerical examples verify the established theoretical performance bounds, and demonstrate the scalability of the algorithm.Comment: arXiv admin note: text overlap with arXiv:1405.778

    The impact of wind uncertainty on the strategic valuation of distributed electricity storage

    Get PDF
    The intermittent nature of wind energy generation has introduced a new degree of uncertainty to the tactical planning of energy systems. Short-term energy balancing decisions are no longer (fully) known, and it is this lack of knowledge that causes the need for strategic thinking. But despite this observation, strategic models are rarely set in an uncertain environment. And even if they are, the approach used is often inappropriate, based on some variant of scenario analysis—what-if analysis. In this paper we develop a deterministic strategic model for the valuation of electricity storage (a battery), and ask: “Though leaving out wind speed uncertainty clearly is a simplification, does it really matter for the valuation of storage?”. We answer this question by formulating a stochastic programming model, and compare its valuation to that of its deterministic counterpart. Both models capture the arbitrage value of storage, but only the stochastic model captures the battery value stemming from wind speed uncertainty. Is the difference important? The model is tested on a case from Lancaster University’s campus energy system where a wind turbine is installed. From our analysis, we conclude that considering wind speed uncertainty can increase the estimated value of storage with up to 50 % relative to a deterministic estimate. However, we also observe cases where wind speed uncertainty is insignificant for storage valuation

    The Economics of Wind Power with Energy Storage

    Get PDF
    We develop a nonlinear mathematical optimization program for investigating the economic and environmental implications of wind penetration in electrical grids and evaluating how hydropower storage could be used to offset wind power intermittence. When wind power is added to an electrical grid consisting of thermal and hydropower plants, it increases system variability and results in a need for additional peak-load, gas-fired generators. Our empirical application using load data for Alberta’s electrical grid shows that 32% wind penetration (normalized to peak demand) results in a net cost increase of C5.20/MWh,while64C5.20/ MWh, while 64% wind penetration could result in an increase of 12.50/MWh. Costs of reducing CO2 emissions are estimated to be 4141-56 per t CO2 . When pumped hydro storage is introduced in the system or the capacity of the water reservoirs is enhanced, the hydropower facility could provide most of the peak load requirements obviating the need to build large peak-load gas generators.Renewable energy, carbon costs, hydropower storage, mathematical programming
    corecore