3,966 research outputs found

    Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

    Full text link
    A detailed environment perception is a crucial component of automated vehicles. However, to deal with the amount of perceived information, we also require segmentation strategies. Based on a grid map environment representation, well-suited for sensor fusion, free-space estimation and machine learning, we detect and classify objects using deep convolutional neural networks. As input for our networks we use a multi-layer grid map efficiently encoding 3D range sensor information. The inference output consists of a list of rotated bounding boxes with associated semantic classes. We conduct extensive ablation studies, highlight important design considerations when using grid maps and evaluate our models on the KITTI Bird's Eye View benchmark. Qualitative and quantitative benchmark results show that we achieve robust detection and state of the art accuracy solely using top-view grid maps from range sensor data.Comment: 6 pages, 4 tables, 4 figure

    Optimal Encodings for Range Min-Max and Top-k

    No full text
    In this paper we consider various encoding problems for range queries on arrays. In these problems, the goal is that the encoding occupies the information theoretic minimum space required to answer a particular set of range queries. Given an array A[1..n]A[1..n] a range top-kk query on an arbitrary range [i,j]⊆[1,n][i,j] \subseteq [1,n] asks us to return the ordered set of indices {l1,...,lk}\{l_1 ,...,l_k \} such that A[lm]A[l_m] is the mm-th largest element in A[i..j]A[i..j]. We present optimal encodings for range top-kk queries, as well as for a new problem which we call range min-max, in which the goal is to return the indices of both the minimum and maximum element in a range

    Template Adaptation for Face Verification and Identification

    Full text link
    Face recognition performance evaluation has traditionally focused on one-to-one verification, popularized by the Labeled Faces in the Wild dataset for imagery and the YouTubeFaces dataset for videos. In contrast, the newly released IJB-A face recognition dataset unifies evaluation of one-to-many face identification with one-to-one face verification over templates, or sets of imagery and videos for a subject. In this paper, we study the problem of template adaptation, a form of transfer learning to the set of media in a template. Extensive performance evaluations on IJB-A show a surprising result, that perhaps the simplest method of template adaptation, combining deep convolutional network features with template specific linear SVMs, outperforms the state-of-the-art by a wide margin. We study the effects of template size, negative set construction and classifier fusion on performance, then compare template adaptation to convolutional networks with metric learning, 2D and 3D alignment. Our unexpected conclusion is that these other methods, when combined with template adaptation, all achieve nearly the same top performance on IJB-A for template-based face verification and identification
    • …
    corecore