12,686 research outputs found

    Study of the CAC mechanisms for telecommunications systems with adaptive links according to propagation conditions

    Get PDF
    This paper presents the framework and the activities of a PhD research work in progress supported by Alcatel Alenia Space in collaboration with TeSA and SUPAERO. It deals with Connection Admission Control (CAC) for Telecommunications Systems with adaptive links according to propagation conditions. Indeed, in high frequency bands communications, deep fadings may occur because of atmospheric propagation losses. The mitigation techniques used to counteract fades impacts the system capacity, therefore the CAC mechanism. The CAC which only uses current capacity information may lead to intolerable dropping of admitted connection, and thus breaches the QoS guarantees made upon connection acceptance. New CAC mechanisms shall be studied to take into account the capacity variation and the mitigation techniques (IFMT) developed to compensate the attenuation in Ka and above frequency range

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Towards Hybrid Cloud-assisted Crowdsourced Live Streaming: Measurement and Analysis

    Full text link
    Crowdsourced Live Streaming (CLS), most notably Twitch.tv, has seen explosive growth in its popularity in the past few years. In such systems, any user can lively broadcast video content of interest to others, e.g., from a game player to many online viewers. To fulfill the demands from both massive and heterogeneous broadcasters and viewers, expensive server clusters have been deployed to provide video ingesting and transcoding services. Despite the existence of highly popular channels, a significant portion of the channels is indeed unpopular. Yet as our measurement shows, these broadcasters are consuming considerable system resources; in particular, 25% (resp. 30%) of bandwidth (resp. computation) resources are used by the broadcasters who do not have any viewers at all. In this paper, we closely examine the challenge of handling unpopular live-broadcasting channels in CLS systems and present a comprehensive solution for service partitioning on hybrid cloud. The trace-driven evaluation shows that our hybrid cloud-assisted design can smartly assign ingesting and transcoding tasks to the elastic cloud virtual machines, providing flexible system deployment cost-effectively

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Region of interest-based adaptive multimedia streaming scheme

    Get PDF
    Adaptive multimedia streaming aims at adjusting the transmitted content based on the available bandwidth such as losses that often severely affect the end-user perceived quality are minimized and consequently the transmission quality increases. Current solutions affect equally the whole viewing area of the multimedia frames, despite research showing that there are regions on which the viewers are more interested in than on others. This paper presents a novel region of interest-based adaptive scheme (ROIAS) for multimedia streaming that when performing transmission-related quality adjustments, selectively affects the quality of those regions of the image the viewers are the least interested in. As the quality of the regions the viewers are the most interested in will not change (or will involve little change),the proposed scheme provides higher overall end-user perceived quality than any of the existing adaptive solutions
    corecore