188 research outputs found

    A Discussion on Parallelization Schemes for Stochastic Vector Quantization Algorithms

    Full text link
    This paper studies parallelization schemes for stochastic Vector Quantization algorithms in order to obtain time speed-ups using distributed resources. We show that the most intuitive parallelization scheme does not lead to better performances than the sequential algorithm. Another distributed scheme is therefore introduced which obtains the expected speed-ups. Then, it is improved to fit implementation on distributed architectures where communications are slow and inter-machines synchronization too costly. The schemes are tested with simulated distributed architectures and, for the last one, with Microsoft Windows Azure platform obtaining speed-ups up to 32 Virtual Machines

    Exponentially Fast Parameter Estimation in Networks Using Distributed Dual Averaging

    Full text link
    In this paper we present an optimization-based view of distributed parameter estimation and observational social learning in networks. Agents receive a sequence of random, independent and identically distributed (i.i.d.) signals, each of which individually may not be informative about the underlying true state, but the signals together are globally informative enough to make the true state identifiable. Using an optimization-based characterization of Bayesian learning as proximal stochastic gradient descent (with Kullback-Leibler divergence from a prior as a proximal function), we show how to efficiently use a distributed, online variant of Nesterov's dual averaging method to solve the estimation with purely local information. When the true state is globally identifiable, and the network is connected, we prove that agents eventually learn the true parameter using a randomized gossip scheme. We demonstrate that with high probability the convergence is exponentially fast with a rate dependent on the KL divergence of observations under the true state from observations under the second likeliest state. Furthermore, our work also highlights the possibility of learning under continuous adaptation of network which is a consequence of employing constant, unit stepsize for the algorithm.Comment: 6 pages, To appear in Conference on Decision and Control 201

    Online Learning of Dynamic Parameters in Social Networks

    Get PDF
    This paper addresses the problem of online learning in a dynamic setting. We consider a social network in which each individual observes a private signal about the underlying state of the world and communicates with her neighbors at each time period. Unlike many existing approaches, the underlying state is dynamic, and evolves according to a geometric random walk. We view the scenario as an optimization problem where agents aim to learn the true state while suffering the smallest possible loss. Based on the decomposition of the global loss function, we introduce two update mechanisms, each of which generates an estimate of the true state. We establish a tight bound on the rate of change of the underlying state, under which individuals can track the parameter with a bounded variance. Then, we characterize explicit expressions for the steady state mean-square deviation(MSD) of the estimates from the truth, per individual. We observe that only one of the estimators recovers the optimal MSD, which underscores the impact of the objective function decomposition on the learning quality. Finally, we provide an upper bound on the regret of the proposed methods, measured as an average of errors in estimating the parameter in a finite time.Comment: 12 pages, To appear in Neural Information Processing Systems (NIPS) 201
    corecore