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Abstract
This paper addresses the problem of online learning in a dynamic setting. We consider a social network in
which each individual observes a private signal about the underlying state of the world and communicates
with her neighbors at each time period. Unlike many existing approaches, the underlying state is dynamic, and
evolves according to a geometric random walk. We view the scenario as an optimization problem where
agents aim to learn the true state while suffering the smallest possible loss. Based on the decomposition of the
global loss function, we introduce two update mechanisms, each of which generates an estimate of the true
state. We establish a tight bound on the rate of change of the underlying state, under which individuals can
track the parameter with a bounded variance. Then, we characterize explicit expressions for the steady state
mean-square deviation(MSD) of the estimates from the truth, per individual. We observe that only one of the
estimators recovers the optimal MSD, which underscores the impact of the objective function decomposition
on the learning quality. Finally, we provide an upper bound on the regret of the proposed methods, measured
as an average of errors in estimating the parameter in a finite time.
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Abstract

This paper addresses the problem of online learning in a dynamic setting. We
consider a social network in which each individual observes a private signal about
the underlying state of the world and communicates with her neighbors at each
time period. Unlike many existing approaches, the underlying state is dynamic,
and evolves according to a geometric random walk. We view the scenario as an
optimization problem where agents aim to learn the true state while suffering the
smallest possible loss. Based on the decomposition of the global loss function, we
introduce two update mechanisms, each of which generates an estimate of the true
state. We establish a tight bound on the rate of change of the underlying state, un-
der which individuals can track the parameter with a bounded variance. Then, we
characterize explicit expressions for the steady state mean-square deviation(MSD)
of the estimates from the truth, per individual. We observe that only one of the
estimators recovers the optimal MSD, which underscores the impact of the objec-
tive function decomposition on the learning quality. Finally, we provide an upper
bound on the regret of the proposed methods, measured as an average of errors in
estimating the parameter in a finite time.

1 Introduction

In recent years, distributed estimation, learning and prediction has attracted a considerable attention
in wide variety of disciplines with applications ranging from sensor networks to social and economic
networks [1–6]. In this broad class of problems, agents aim to learn the true value of a parameter
often called the underlying state of the world. The state could represent a product, an opinion, a
vote, or a quantity of interest in a sensor network. Each agent observes a private signal about the
underlying state at each time period, and communicates with her neighbors to augment her imperfect
observations. Despite the wealth of research in this area when the underlying state is fixed (see
e.g. [1–3, 7]), often the state is subject to some change over time(e.g. the price of stocks) [8–11].
Therefore, it is more realistic to study models which allow the parameter of interest to vary. In
the non-distributed context, such models have been studied in the classical literature on time-series
prediction, and, more recently, in the literature on online learning under relaxed assumptions about
the nature of sequences [12]. In this paper we aim to study the sequential prediction problem in the
context of a social network and noisy feedback to agents.

We consider a stochastic optimization framework to describe an online social learning problem when
the underlying state of the world varies over time. Our motivation for the current study is the results
of [8] and [9] where authors propose a social learning scheme in which the underlying state follows
a simple random walk. However, unlike [8] and [9], we assume a geometric random walk evolution
with an associated rate of change. This enables us to investigate the interplay of social learning,
network structure, and the rate of state change, especially in the interesting case that the rate is
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greater than unity. We then pose the social learning as an optimization problem in which individuals
aim to suffer the smallest possible loss as they observe the stream of signals. Of particular relevance
to this work is the work of Duchi et al. in [13] where the authors develop a distributed method
based on dual averaging of sub-gradients to converge to the optimal solution. In this paper, we
restrict our attention to quadratic loss functions regularized by a quadratic proximal function, but
there is no fixed optimal solution as the underlying state is dynamic. In this direction, the key
observation is the decomposition of the global loss function into local loss functions. We consider
two decompositions for the global objective, each of which gives rise to a single-consensus-step

belief update mechanism. The first method incorporates the averaged prior beliefs among neighbors
with the new private observation, while the second one takes into account the observations in the
neighborhood as well. In both scenarios, we establish that the estimates are eventually unbiased, and
we characterize an explicit expression for the mean-square deviation(MSD) of the beliefs from the
truth, per individual. Interestingly, this quantity relies on the whole spectrum of the communication
matrix which exhibits the formidable role of the network structure in the asymptotic learning. We
observe that the estimators outperform the upper bound provided for MSD in the previous work [8].
Furthermore, only one of the two proposed estimators can compete with the centralized optimal
Kalman Filter [14] in certain circumstances. This fact underscores the dependence of optimality
on decomposition of the global loss function. We further highlight the influence of connectivity on
learning by quantifying the ratio of MSD for a complete versus a disconnected network. We see that
this ratio is always less than unity and it can get arbitrarily close to zero under some constraints.

Our next contribution is to provide an upper bound for regret of the proposed methods, defined as
an average of errors in estimating the parameter up to a given time minus the long-run expected
loss due to noise and dynamics alone. This finite-time regret analysis is based on the recently
developed concentration inequalities for matrices and it complements the asymptotic statements
about the behavior of MSD.

Finally, we examine the trade-off between the network sparsity and learning quality in a microscopic
level. Under mild technical constraints, we see that losing each connection has detrimental effect on
learning as it monotonically increases the MSD. On the other hand, capturing agents communica-
tions with a graph, we introduce the notion of optimal edge as the edge whose addition has the most
effect on learning in the sense of MSD reduction. We prove that such a friendship is likely to occur
between a pair of individuals with high self-reliance that have the least common neighbors.

2 Preliminaries

2.1 State and Observation Model

We consider a network consisting of a finite number of agents V = {1, 2, ..., N}. The agents
indexed by i ∈ V seek the underlying state of the world, xt ∈ R, which varies over time and evolves
according to

xt+1 = axt + rt, (1)

where rt is a zero mean innovation, which is independent over time with finite variance E[r2t ] = σ
2
r ,

and a ∈ R is the expected rate of change of the state of the world, assumed to be available to all
agents, and could potentially be greater than unity. We assume the initial state x0 is a finite random
variable drawn independently by the nature. At time period t, each agent i receives a private signal
yi,t ∈ R, which is a noisy version of xt, and can be described by the linear equation

yi,t = xt + wi,t, (2)

where wi,t is a zero mean observation noise with finite variance E[w2
i,t] = σ

2
w, and it is assumed to

be independent over time and agents, and uncorrelated to the innovation noise. Each agent i forms
an estimate or a belief about the true value of xt at time t conforming to an update mechanism that
will be discussed later. Much of the difficulty of this problem stems from the hardness of tracking a
dynamic state with noisy observations, especially when |a| > 1, and communication mitigates the
difficulty by virtue of reducing the effective noise.

2



2.2 Communication Structure

Agents communicate with each other to update their beliefs about the underlying state of the world.
The interaction between agents is captured by an undirected graph G = (V, E), where V is the set
of agents, and if there is a link between agent i and agent j, then {i, j} ∈ E . We let N̄i = {j ∈

V : {i, j} ∈ E} be the set of neighbors of agent i, and Ni = N̄i ∪ {i}. Each agent i can only
communicate with her neighbors, and assigns a weight pij > 0 for any j ∈ N̄i. We also let pii ≥ 0
denote the self-reliance of agent i.
Assumption 1. The communication matrix P = [pij ] is symmetric and doubly stochastic, i.e., it

satisfies

pij ≥ 0 , pij = pji , and

�

j∈Ni

pij =
N�

j=1

pij = 1.

We further assume the eigenvalues of P are in descending order and satisfy

−1 < λN (P ) ≤ ... ≤ λ2(P ) < λ1(P ) = 1.

2.3 Estimate Updates

The goal of agents is to learn xt in a collaborative manner by making sequential predictions. From
optimization perspective, this can be cast as a quest for online minimization of the separable, global,
time-varying cost function

min
x̄∈R

ft(x̄) =
1

N

N�

i=1

�
f̂i,t(x̄) �

1

2
E
�
yi,t − x̄

�2
�

=
1

N

N�

i=1

�
f̃i,t(x̄) �

N�

j=1

pij f̂j,t(x̄)

�
, (3)

at each time period t. One approach to tackle the stochastic learning problem formulated above is to
employ distributed dual averaging regularized by a quadratic proximal function [13]. To this end, if
agent i exploits f̂i,t as the local loss function, she updates her belief as

x̂i,t+1 = a

� �

j∈Ni

pij x̂j,t

� �� �
consensus update

+α(yi,t − x̂i,t)� �� �
innovation update

�
, (4)

while using f̃i,t as the local loss function results in the following update

x̃i,t+1 = a

� �

j∈Ni

pij x̃j,t

� �� �
consensus update

+α(
�

j∈Ni

pijyj,t − x̃i,t)

� �� �
innovation update

�
, (5)

where α ∈ (0, 1] is a constant step size that agents place for their innovation update, and we refer
to it as signal weight. Equations (4) and (5) are distinct, single-consensus-step estimators differing
in the choice of the local loss function with (4) using only private observations while (5) averaging
observations over the neighborhood. We analyze both class of estimators noting that one might
expect (5) to perform better than (4) due to more information availability.

Note that the choice of constant step size provides an insight on the interplay of persistent innovation
and learning abilities of the network. We remark that agents can easily learn the fixed rate of change
a by taking ratios of observations, and we assume that this has been already performed by the agents
in the past. The case of a changing a is beyond the scope of the present paper. We also point out that
the real-valued (rather than vector-valued) nature of the state is a simplification that forms a clean
playground for the study of the effects of social learning, effects of friendships, and other properties
of the problem.

2.4 Error Process

Defining the local error processes ξ̂i,t and ξ̃i,t, at time t for agent i, as

ξ̂i,t � x̂i,t − xt and ξ̃i,t � x̃i,t − xt,
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and stacking the local errors in vectors ξ̂t, ξ̃t ∈ RN , respectively, such that

ξ̂t � [ξ̂1,t, ..., ξ̂N,t]
T and ξ̃t � [ξ̃1,t, ..., ξ̃N,t]

T
, (6)

one can show that the aforementioned collective error processes could be described as a linear dy-
namical system.
Lemma 2. Given Assumption 1, the collective error processes ξ̂t and ξ̃t defined in (6) satisfy

ξ̂t+1 = Qξ̂t + ŝt and ξ̃t+1 = Qξ̃t + s̃t, (7)
respectively, where

Q = a(P − αIN ), (8)
and

ŝt = (αa)[w1,t, ..., wN,t]
T
− rt1N and s̃t = (αa)P [w1,t, ..., wN,t]

T
− rt1N , (9)

with 1N being vector of all ones.

Throughout the paper, we let ρ(Q), denote the spectral radius of Q, which is equal to the largest
singular value of Q due to symmetry.

3 Social Learning: Convergence of Beliefs and Regret Analysis

In this section, we study the behavior of estimators (4) and (5) in the mean and mean-square sense,
and we provide the regret analysis.

In the following proposition, we establish a tight bound for a, under which agents can achieve
asymptotically unbiased estimates using proper signal weight.
Proposition 3 (Unbiased Estimates). Given the network G with corresponding communication ma-

trix P satisfying Assumption 1, the rate of change of the social network in (4) and (5) must respect

the constraint

|a| <
2

1− λN (P )
,

to allow agents to form asymptotically unbiased estimates of the underlying state.

Proposition 3 determines the trade-off between the rate of change and the network structure. In other
words, changing less than the rate given in the statement of the proposition, individuals can always
track xt with bounded variance by selecting an appropriate signal weight. However, the proposition
does not make any statement on the learning quality. To capture that, we define the steady state
Mean Square Deviation(MSD) of the network from the truth as follows.
Definition 4 ((Steady State-)Mean Square Deviation). Given the network G with a rate of change

which allows unbiased estimation, the steady state of the error processes in (7) is defined as follows

Σ̂ � lim
t→∞

E[ξ̂tξ̂T
t ] and Σ̃ � lim

t→∞
E[ξ̃tξ̃T

t ].

Hence, the (Steady State-)Mean Square Deviation of the network is the deviation from the truth in

the mean-square sense, per individual, and it is defined as

ˆMSD � 1

N
Tr(Σ̂) and ˜MSD � 1

N
Tr(Σ̃).

Theorem 5 (MSD). Given the error processes (7) with ρ(Q) < 1, the steady state MSD for (4) and

(5) is a function of the communication matrix P , and the signal weight α as follows

ˆMSD(P, α) = RMSD(α) + ŴMSD(P, α) ˜MSD(P, α) = RMSD(α) + W̃MSD(P, α), (10)
where

RMSD(α) � σ
2
r

1− a2(1− α)2
, (11)

and

ŴMSD(P, α) � 1
N

N�

i=1

a2α2σ2
w

1− a2(λi(P )− α)2
and W̃MSD(P, α) � 1

N

N�

i=1

a2α2σ2
wλ

2
i (P )

1− a2(λi(P )− α)2
. (12)
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Theorem 5 shows that the steady state MSD is governed by all eigenvalues of P contributing to
WMSD pertaining to the observation noise, while RMSD is the penalty incurred due to the inno-
vation noise. Moreover, (5) outperforms (4) due to richer information diffusion, which stresses the
importance of global loss function decomposition.

One might advance a conjecture that a complete network, where all individuals can communicate
with each other, achieves a lower steady state MSD in the learning process since it provides the
most information diffusion among other networks. This intuitive idea is discussed in the following
corollary beside a few examples.
Corollary 6. Denoting the complete, star, and cycle graphs on N vertices by KN , SN , and CN , re-

spectively, and denoting their corresponding Laplacians by LKN , LSN , and LCN , under conditions

of Theorem 5,

(a) For P = I −
1−α
N LKN , we have

lim
N→∞

ˆMSDKN = RMSD(α) + a
2
α
2
σ
2
w. (13)

(b) For P = I −
1−α
N LSN , we have

lim
N→∞

ˆMSDSN = RMSD(α) +
a
2
α
2
σ
2
w

1− a2(1− α)2
. (14)

(c) For P = I − βLCN , where β must preserve unbiasedness, we have

lim
N→∞

ˆMSDCN = RMSD(α) +

� 2π

0

a
2
α
2
σ
2
w

1− a2(1− β(2− 2 cos(τ))− α)2
dτ

2π
. (15)

(d) For P = I −
1
NLKN , we have

lim
N→∞

˜MSDKN = RMSD(α). (16)

Proof. Noting that the spectrum of LKN , LSN and LCN are, respectively [15], {λN = 0, λN−1 =
N, ..., λ1 = N}, {λN = 0, λN−1 = 1, ..., λ2 = 1, λ1 = N}, and {λi = 2 − 2 cos( 2πiN )}N−1

i=0 ,

substituting each case in (10), and taking the limit over N , the proof follows immediately.

To study the effect of communication let us consider the estimator (4). Under purview of Theorem
5 and Corollary 6, the ratio of the steady state MSD for a complete network (13) versus a fully
disconnected network(P = IN ) can be computed as

lim
N→∞

ˆMSDKN

ˆMSDdisconnected

=
σ
2
r + a

2
α
2
σ
2
w(1− a

2(1− α)2)

σ2
r + a2α2σ2

w

≈ 1− a
2(1− α)2,

for σ2
r � σ

2
w. The ratio above can get arbitrary close to zero which, indeed, highlights the influence

of communication on the learning quality.

We now consider Kalman Filter(KF) [14] as the optimal centralized counterpart of (5). It is well-
known that the steady state KF satisfies a Riccati equation, and when the parameter of interest is
scalar, the Riccati equation simplifies to a quadratic with the positive root

ΣKF =
a
2
σ
2
w − σ

2
w +Nσ

2
r +

�
(a2σ2

w − σ2
w +Nσ2

r)
2 + 4Nσ2

wσ
2
r

2N
.

Therefore, comparing with the complete graph (16), we have

lim
N→∞

ΣKF = σ
2
r ≤

σ
2
r

1− a2(1− α)2
,

and the upper bound can be made tight by choosing α = 1 for |a| < 1
|λN (P )−1| . If |a| ≥ 1

|λN (P )−1|
we should choose an α < 1 to preserve unbiasedness as well.
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On the other hand, to evaluate the performance of estimator (4), we consider the upper bound

MSDBound =
σ
2
r + α

2
σ
2
w

α
, (17)

derived in [8], for a = 1 via a distributed estimation scheme. For simplicity, we assume σ2
w = σ

2
r =

σ
2, and let β in (15) be any diminishing function of N . Optimizing (13), (14), (15), and (17) over

α, we obtain
lim

N→∞
ˆMSDKN ≈ 1.55σ2

< lim
N→∞

ˆMSDSN = lim
N→∞

ˆMSDCN ≈ 1.62σ2
< MSDBound = 2σ2

,

which suggests a noticeable improvement in learning even in the star and cycle networks where the
number of individuals and connections are in the same order.

Regret Analysis

We now turn to finite-time regret analysis of our methods. The average loss of all agents in predicting
the state, up until time T , is

1

T

T�

t=1

1

N

N�

i=1

(x̂i,t − xt)
2 =

1

T

T�

t=1

1

N
Tr(ξ̂tξ̂T

t ) .

As motivated earlier, it is not possible, in general, to drive this average loss to zero, and we need to
subtract off the limit. We thus define regret as

RT � 1

T

T�

t=1

1

N
Tr(ξ̂tξ̂T

t )−
1

T

T�

t=1

1

N
Tr(Σ̂) =

1

N
Tr

�
1

T

T�

t=1

ξ̂tξ̂
T
t − Σ̂

�
,

where Σ̂ is from Definition 4. We then have for the spectral norm � · � that

RT ≤

�����
1

T

T�

t=1

ξtξ
T
t − Σ

����� , (18)

where we dropped the distinguishing notation between the two estimators since the analysis works
for both of them. We, first, state a technical lemma from [16] that we invoke later for bounding the
quantity RT . For simplicity, we assume that magnitudes of both innovation and observation noise
are bounded.
Lemma 7. Let {st}

T
t=1 be an independent family of vector valued random variables, and let H

be a function that maps T variables to a self-adjoint matrix of dimension N . Consider a sequence

{At}
T
t=1 of fixed self-adjoint matrices that satisfy

�
H(ω1, ..., ωt, ..., ωT )−H(ω1, ..., ω

�
t, ..., ωT )

�2

� A
2
t ,

where ωi and ω
�
i range over all possible values of si for each index i. Letting Var = �

�T
t=1 A

2
t�,

for all c ≥ 0, we have

P
���H(s1, ..., sT )− E[H(s1, ..., sT )]

�� ≥ c

�
≤ Ne

−c2/8Var
.

Theorem 8. Under conditions of Theorem 5 together with boundedness of noise maxt≤T �st� ≤ s

for some s > 0, the regret function defined in (18) satisfies

RT ≤
1

T

�
�ξ0�

2

1− ρ2(Q)

�
+

1

T

�
2s�ξ0��

1− ρ(Q)
�2

�
+

1

T

�
s
2

�
1− ρ2(Q)

�2

�
+

1
√
T

8s2
�

2 log N
δ

(1− ρ(Q))2
,

(19)
with probability at least 1− δ.

We mention that results that are similar in spirit have been studied for general unbounded stationary
ergodic time series in [17–19] by employing techniques from the online learning literature. On the
other hand, our problem has the network structure and the specific evolution of the hidden state, not
present in the above works.

6



4 The Impact of New Friendships on Social Learning

In the social learning model we proposed, agents are cooperative and they aim to accomplish a global
objective. In this direction, the network structure contributes substantially to the learning process.
In this section, we restrict our attention to estimator (5), and characterize the intuitive idea that mak-
ing(losing) friendships can influence the quality of learning in the sense of decreasing(increasing)
the steady state MSD of the network.

To commence, letting ei denote the i-th unit vector in the standard basis of RN , we exploit the
negative semi-definite, edge function matrix

∆P (i, j) � −(ei − ej)(ei − ej)
T
, (20)

for edge addition(removal) to(from) the graph. Essentially, if there is no connection between agents
i and j,

P� � P + �∆P (i, j), (21)

for � < min{pii, pjj}, corresponds to a new communication matrix adding the edge {i, j} with a
weight � to the network G, and subtracting � from self-reliance of agents i and j.
Proposition 9. Let G−

be the network resulted by removing the bidirectional edge {i, j} with the

weight � from the network G, so P−� and P denote the communication matrices associated to G−

and G, respectively. Given Assumption 1, for a fixed signal weight α the following relationship holds

˜MSD(P, α) ≤ ˜MSD(P−�, α), (22)

as long as P is positive semi-definite, and |a| <
1
|α| .

Under a mild technical assumption, Proposition 9 suggests that losing connections monotonically
increases the MSD, and individuals tend to maintain their friendships to obtain a lower MSD as a
global objective. However, this does not elaborate on the existence of individuals with whom losing
or making connections could have an immense impact on learning. We bring this concept to light
in the following proposition with finding a so-called optimal edge which provides the most MSD
reduction, in case it is added to the network graph.
Proposition 10. Given Assumption 1, a positive semi-definite P , and |a| <

1
|α| , to find the optimal

edge with a pre-assigned weight � � 1 to add to the network G, we need to solve the following

optimization problem

min
{i,j}/∈E

N�

k=1

�
hk(i, j) �

zk(i, j)
�
2(1− α

2
a
2)λk(P ) + 2a2αλ2

k(P )
�

�
1− a2(λk(P )− α)2

�2

�
, (23)

where

zk(i, j) � (vT
k∆P (i, j)vk)�, (24)

and {vk}
N
k=1 are the right eigenvectors of P . In addition, letting ζmax = maxk>1 |λk(P )− α|,

min
{i,j}/∈E

N�

k=1

hk(i, j) ≥ min
{i,j}/∈E

−2�
�
(1− α

2
a
2)(pii + pjj) + a

2
α([P 2]ii + [P 2]jj − 2[P 2]ij)

�
�
1− a2ζ2max

�2 .

(25)

Proof. Representing the first order approximation of λk(P�) using definition of zk(i, j) in (24), we
have λk(P�) ≈ λk(P ) + zk(i, j) for � � 1. Based on Theorem 5, we now derive

˜MSD(P�, α)− ˜MSD(P, α) ∝
N�

k=1

�
λk(P�)− λk(P )

��
(1− α2a2)(λk(P�) + λk(P )) + 2a2αλk(P )λk(P�)

�
�
1− a2(λk(P )− α)2

��
1− a2(λk(P�)− α)2

�

≈

N�

k=1

zk(i, j)
�
2(1− α2a2)λk(P ) + 2a2αλ2

k(P ) + (1− α2a2 + 2a2αλk(P ))zk(i, j)
�

�
1− a2(λk(P )− α)2

��
1− a2(λk(P )− α+ zk(i, j))2

�

=
N�

k=1

zk(i, j)
�
2(1− α2a2)λk(P ) + 2a2αλ2

k(P )
�

�
1− a2(λk(P )− α)2

�2 +O(�2),
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noting that zk(i, j) is O(�) from the definition (24). Minimizing ˜MSD(P�, α) − ˜MSD(P, α) is,
hence, equivalent to optimization (23) when � � 1. Taking into account that P is positive semi-
definite, zk(i, j) ≤ 0 for k ≥ 2, and v1 = 1N/

√
N which implies z1(i, j) = 0, we proceed to the

lower bound proof using the definition of hk(i, j) and ζmax in the statement of the proposition, as
follows

N�

k=1

hk(i, j) =
N�

k=2

zk(i, j)
�
2(1− α

2
a
2)λk(P ) + 2a2αλ2

k(P )
�

�
1− a2(λk(P )− α)2

�2

≥
1

�
1− a2ζ2max

�2
N�

k=2

zk(i, j)
�
2(1− α

2
a
2)λk(P ) + 2a2αλ2

k(P )
�
.

Substituting zk(i, j) from (24) to above, we have

N�

k=1

hk(i, j) ≥
2�

�
1− a2ζ2max

�2

� N�

k=1

�
v

T
k∆P (i, j)vk

��
(1− α

2
a
2)λk(P ) + a

2
αλ

2
k(P )

��

=
2�

�
1− a2ζ2max

�2 Tr
�
∆P (i, j)

N�

k=1

�
(1− α

2
a
2)λk(P ) + a

2
αλ

2
k(P )

�
vkv

T
k

�

=
2�

�
1− a2ζ2max

�2 Tr
�
∆P (i, j)

�
(1− α

2
a
2)P + a

2
αP

2
��

.

Using the facts that Tr(∆P (i, j)P ) = −pii−pjj +2pij and Tr(∆P (i, j)P 2) = −[P 2]ii− [P 2]jj +
2[P 2]ij according to definition of ∆P (i, j) in (20), and pij = 0 since we are adding a non-existent
edge {i, j}, the lower bound (25) is derived.

Beside posing the optimal edge problem as an optimization, Proposition 10 also provides an up-
per bound for the best improvement that making a friendship brings to the network. In view of
(25), forming a connection between two agents with more self-reliance and less common neighbors,
minimizes the lower bound, which offers the most maneuver for MSD reduction.

5 Conclusion

We studied a distributed online learning problem over a social network. The goal of agents is to
estimate the underlying state of the world which follows a geometric random walk. Each individual
receives a noisy signal about the underlying state at each time period, so she communicates with her
neighbors to recover the true state. We viewed the problem with an optimization lens where agents
want to minimize a global loss function in a collaborative manner. To estimate the true state, we
proposed two methodologies derived from a different decomposition of the global objective. Given
the structure of the network, we provided a tight upper bound on the rate of change of the param-
eter which allows agents to follow the state with a bounded variance. Moreover, we computed the
averaged, steady state, mean-square deviation of the estimates from the true state. The key obser-
vation was optimality of one of the estimators indicating the dependence of learning quality on the
decomposition. Furthermore, defining the regret as the average of errors in the process of learning
during a finite time T , we demonstrated that the regret function of the proposed algorithms decays
with a rate O(1/

√
T ). Finally, under mild technical assumptions, we characterized the influence of

network pattern on learning by observing that each connection brings a monotonic decrease in the
MSD.
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